Monitoring of Circulating Tumor DNA in Serially Collected Plasma in Patients with Gastric Cancer

A Thesis Submitted to the Department of Cancer Biomedical Science in Partial Fulfillment of the Requirements
for the Master's Degree of Science

Hye Won Sim

July 2019

National Cancer Center
Graduate School of Cancer Science and Policy

We hereby approve the M.S. thesis of Hye Won Sim

July 2019

Kyeong-Man Hong Chairman of Thesis Committee

ABSTRACT

Monitoring of Circulating Tumor DNA in Serially Collected Plasma in Gastric Cancer Patients

Circulating tumor DNA (ctDNA) has emerged as a candidate biomarker for cancer screening. However, the studies on the usefulness of ctDNA for post-operative recurrence monitoring are limited. The present study monitored ctDNA in post-operative blood, employing cancer-specific rearrangements. Personalized cancer-specific rearrangements in 25 gastric cancers were analyzed by whole-genome sequencing (WGS) and were employed for ctDNA monitoring with blood until 12 month after surgery. Personalized cancer-specific rearrangements were identified in 19 cases. The median lead time, which is the median duration between ctDNA-positive detection and recurrence, was 4.05 months. Post-operative ctDNA prior to clinical recurrence was significantly correlated with cancer recurrence within 12 months of surgery $(P=0.029)$, in contrast to the finding of no correlation for pre-operative ctDNA, suggesting the clinical usefulness of post-operative ctDNA monitoring for cancer recurrence in gastric cancer patients However, the clinical application of ctDNA can be limited by the presence of ctDNA non-shedders ($42.1 \%, 8 / 19$) and by inconsistent post-operative ctDNA positivity.

Copyright by
Hye Won Sim
2019

Contents

1. Introduction 1
1.1 Gastric cancer recurrence 1
1.2 Emerging role of circulating tumor DNA 2
1.3 Next generation sequencing 4
1.4 Laser capture microdissection 5
1.5 Quantitative PCR 6
2. Purpose of this study 7
3. Materials and Methods 8
3.1 Study design 8
3.2 Patients sample collection 10
3.3 LCM from fresh-frozen samples 10
3.4 Library preparation and WGS 11
3.5 Analysis of rearranged sequences in WGS data. 11
3.6 Confirmation of selected rearrangements in cancer DNA 12
3.7 Detection of rearranged sequences in plasma cell-free DNA 13
3.8 Statistical analysis 14
4. Results 49
4.1 LCM and purification of DNA 49
4.2 Identification of tumor-specific rearranged sequences 51
4.3 Confirmation of selected tumor-specific rearranged sequences 51
4.4 Monitoring for presence of ctDNA in serial plasma samples 52
4.5 Correlation between post-operative ctDNA and clinical recurrence 57
4.6 Quantitative measurement of ctDNA in plasma 60
5. Discussion 66
Bibliography 72
Acknowledgment 78

List of Tables

Table 1. Analysis of personalized cancer-specific rearranged sequences in gastric cancer patients 15
Table 2. Clinical information for gastric cancer patients accrued in the present study 17
Table 3. The summary of whole genome shotgun data 18
Table 4. Translocation sites identified by whole genome sequencing. 21
Table 5. E Rearranged sites for the confirmation by PCR amplification. 37
Table 6. Primer information for quantitative PCR. 48
Table 7. Estimation of relative level of ctDNA by quantitative PCR. 63
Table 8. Estimation of the level of pre-operative ctDNA byquantitative PCR in 5 pre-operative ctDNA-negative cases.. 64
Table 9. Quantitative measurement of ctDNA by digital droplet PCR65

List of Figures

Figure 1. Cancer incidence and mortality in worldwide, Globocan 2018 1
Figure 2. Circulating cell-free DNA (cfDNA) and circulating tumorDNA (ctDNA) are found in serum and plasma fractions fromblood.3
Figure 3. Overview of a Potential Next-Generation Sequencing Work
Flow 5
Figure 4. High-throughput LCM-proteomics platform for ultrasensitive analysis. 6
Figure 5. Study Scheme 9
Figure 6. Fresh-frozen primary tumors, stained with haematoxylin
and eosin. 50
Figure 7. Identification of personalized cancer-specific
rearrangements 53
Figure 8. Monitoring of ctDNA in serially collected plasma samples. 54

Figure 9. Confirmation of rearrangements by Sanger sequencing for
\qquad

Figure 10. ctDNA positivity in 19 gastric cancer patients. .56

Figure 11. Correlation of ctDNA positivity with recurrent event within post-operative 12 months. .59

Figure 12. Quantitative measurement of ctDNA levels in serial plasma samples from gastric cancer patients....................................... 62

1. Introduction

1.1 Gastric cancer recurrence

Gastric cancer is one of the most commonly diagnosed and deadly cancers in the world (Rawla and Barsouk 2019). In 2018, the incidence of gastric cancer ranked fifth and mortality ranked third for all cancers, and all ages in worldwide (Figure 1). Curative surgical resection is the most effective treatment for gastric cancer (Shin et al. 2016). However, patients who have undergone surgical resection could experience recurrence, especially within 2 years. Recurrence of gastric cancer has a great effect on mortality. The recurrence rates of gastric cancer after curative surgical resection are various according to tumor size, stage of disease, and lymphatic invasion (Liu et al. 2016, Jung et al. 2014, Norio Shiraishi 2000). Early or timely detection of gastric cancer recurrence can help reduce incidences of cancer-related deaths (Hamashima et al. 2013)

Figure 1. Cancer incidence and mortality in worldwide, Globocan 2018.
A. Cancer incidence for all cancers, and all ages in worldwide. B. Cancer mortality for all cancers, and all ages in worldwide.

For detection of gastric cancer recurrence, computed tomography (CT), and positron emission tomography (PET) usually are used (Hallinan and Venkatesh 2013). However, those methods depend on morphological changes, and thus, those accuracy is poor. The most frequent recurrence patterns in early gastric cancer after surgery are peritoneal seeding and remnant tumors from surgical resection. But they are difficult to diagnosis with CT (Hamakawa et al. 2015, Choi et al. 2016).

Recently, liquid biopsy has been widely used in clinical monitoring for cancer diagnosis owing to various advantages, such as non-invasiveness, potential rapidity and precision. Liquid biopsy utilizes circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), samples derived from blood, urine, saliva, cerebrospinal fluid (CSF) and the like (Bai and Zhao 2018, Siravegna et al. 2017). The present dissertation was designed for detection of ctDNA in gastric cancer patients after curative surgical resection.

1.2 Emerging role of circulating tumor DNA

Circulating tumor DNA (ctDNA) is a fragment of genetic material shed from necrotic or apoptotic tumor cells, introduced thereby into systemic circulation, and found in the cell-free component of blood (Figure 2) (Bettegowda et al. 2014, Dawson, Rosenfeld, and Caldas 2013, Diehl et al. 2008). ctDNA contains tumor genetic alteration sequences such as point mutation or rearrangements.

Rearrangements include deletions, insertions, translocations, and others (Lars Feuk 2006).
ctDNA has emerged as a candidate biomarker for screening of cancer patients, for monitoring of cancer recurrence, and for determining somatic mutations in cancer patients (Sung et al. 2017, Park, Cho, et al. 2018, Cohen et al. 2018). There are many techniques to detect alteration from ctDNA, among which are polymerase chain reaction (PCR)-based assays, and next generation sequencing (NGS)-based assays (Bettegowda et al. 2014).
ctDNA's high fragmentation state and low amounts makes it difficult to detect or analysis accurately (Vendrell et al. 2017). In order to remedy this problem, this dissertation employed cancer-specific rearrangements to enhance the sensitivity and specificity of ctDNA monitoring for cancer recurrence.

Figure 2. Circulating cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) are found in serum and plasma fractions from blood. The
mechanism of ctDNA release is unknown, though apoptosis, necrosis, and active shedding from tumor cells have been hypothesized. Once ctDNA is isolated, it can be quantitated and analyzed for genomic alterations (Hahn et al. 2019)

1.3 Next generation sequencing

Next generation sequencing (NGS), also known as high-throughput sequencing, can determine the sequences of large numbers of DNA variation, in the thousands or millions at once (Figure 3) (Kwon 2012). AS such it offers much greater sensitivity and accuracy than can the Sanger sequencing techniques (Simona Serratì 2016). The clinical application of NGS has rapidly evolved, and widened, from diagnostics to prognostics (Kamps et al. 2017). Especially, NGS is actively employed in the field of cancer research for discovery of biomarkers that can be utilized as targets in personalized therapies (Basho 2015).

Whole genome sequencing (WGS), using NGS techniques, can be used to obtain information on the entire genome, including the intron and exome regions. WGS offers high resolution genetic alterations, and comprehensive evaluation of cancer genomics (Horak, Frohling, and Glimm 2016). With these features, WGS is predominantly applied for detection of genetic alterations in cancer (Nakagawa and Fujita 2018). The present dissertation employed WGS to analyze samples' cancer-specific rearrangements, especially translocations, in order to employ them as markers for detection of ctDNA in blood.

Figure 3. Overview of a Potential Next-Generation Sequencing Work Flow (Basho 2015).

1.4 Laser capture microdissection

Laser capture microdissection (LCM) is used to accurately separate specific cells of interest from tumor, stromal and normal tissue within a single biopsy specimen. Thereby, it is possible to obtain specific tumor enrichment cells (S Curran 2000, Virginia Espina 2006) (Figure 4). Such enrichment cells are well suited for genomic analysis (De Marchi et al. 2016).

In the analysis of cancer tissues containing low percentage of cancer cells, obtaining rearrangement information is may not be easy. Due to the fact that non-rearranged sequences outnumber rearranged ones. By enrichment of cancer cells and utilization of the resultantly enriched rearranged sequences, the chance of detection of rearrangements is enhanced. This dissertation employed LCM to increase the accuracy of WGS and to obtain specific tumor enrichment cells thereby.

Figure 4. High-throughput LCM-proteomics platform for ultrasensitive analysis. Schematic of the LCM proteomics workflow (Clair et al. 2016).

1.5 Quantitative PCR

Quantitative polymerase chain reaction (qPCR), also known real-time PCR, is a method that can quantify target DNA by amplification (Dhanasekaran et al. 2010). qPCR is used to measure the emitted fluorescence of targeted DNA during
a PCR. In general, traditional PCR detects only the presence or absence of target products at the end point. qPCR, by contrast, detects the amounts of PCR products in the exponential growth phase. Thus using qPCR, with its high technical sensitivity (<5 copies) and a high precision ($<2 \%$ standard deviation) (Klein 2002). Both absolute quantification and relative quantification of target genes are possible. As absolute quantification can determine the absolute copy number of targets (Jie FU 2009). qPCR is applied for diagnosis of infectious disease, cancers and others (Espy et al. 2006). In the present dissertation, qPCR was employed for quantitation of the total amount of ctDNA in plasma.

2. Purpose of This Study

The aims of this study were 1) to conduct a feasibility test for detection of low-level post-operative ctDNA in serially collected blood samples in early phases of clinical recurrence in gastric cancer patients who had undergone surgical resection of primary tumor, and 2) to evaluate the usefulness of post-operative ctDNA for monitoring of cancer recurrence.

3. Materials and Methods

3.1 Study design

This study retrospectively and preferentially selected 25 recurrent cases whose frozen primary tumor samples as well as serial plasma samples obtained up to 12 months after curative surgical resection were both available. 2 cases already had peritoneal metastasis and found after surgery. 19 cases had recurrence and 4 cases had not a recurrence after surgical resection within 12 month. DNAs were prepared after laser-capture microdissection (LCM). Rearranged sequences were analyzed from WGS, and were confirmed 19 cases by PCR sequencing. The presence of ctDNA was monitored by PCR amplification of personalized cancer-specific rearranged sequences in serially collected plasma samples (Figure 5). .

Figure 5. Study Scheme
A. Cases utilized in present study. B. Methodological procedure of present study.

3.2 Patients sample collection

Plasma samples were prepared from whole blood on pre-operative day and at post-operative $1,3,6,9$, and 12 months after surgical resection of primary cancer. Fresh-frozen paired tumor and normal tissues were obtained from the Tissue Bank of the National Cancer Center, Korea. All of the patients had been diagnosed as gastric cancer stage II, III or IV according to the seventh edition of the AJCC TNM-staging system, and their clinical information is summarized in Tables 1 and 2. The use of plasma and tissue samples for the present study was approved by the Institutional Review Board of the National Cancer Center, Korea (NCC2014-0025), and all methods were performed in accordance with the relevant guidelines and regulations. The informed consents for all participants in the present study were obtained from our previous study (NCCTS-04-105) for plasma and from the Tissue Bank for frozen tissues, and waived for the present study.

3.3 Laser-capture microdissection (LCM) from fresh-frozen

samples

A pathologist confirmed the gastric cancer cells for each sample and demarcated the tumor areas on Hematoxylin and Eosin (H\&E)-stained slides. To obtain samples consisting of 70% or more tumor cells, tumor areas were dissected using a laser-capture microdissection (LCM) instrument (Ion LMD, Jungwoo F\&B, Korea). The dissected tumor fragments were incubated in 1 M
sodium thiocyanate overnight. Subsequently, DNA was isolated using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany). The fresh-frozen tissues were used also for paired normal gastric tissue DNA preparation after confirmation on H\&E stained slides by a pathologist.

3.4 Library preparation and WGS

Preparation of sequencing libraries using the TruSeq Nano DNA Sample Preparation Kit (Illumina, San Diego, CA, USA) and 150-bp paired-end sequencing by Illumina HiSeqX Ten with 30X average read depth were performed at Macrogen (Korea).

3.5 Analysis of rearranged sequences in WGS data

From the raw sequence data (FASTQ file), SAM files were prepared by the Burrows-Wheeler Aligner (BWA) (http://bio-bwa.sourceforge.net) using the UCSC Human Reference Genome hg19. BAM files were generated with SAMtools (http://samtools.sourceforge.net/). Quality control with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was performed by trimming data with a sequence quality score less than 30 . The trimmed BAM file was sorted with SAMtools according to the leftmost coordinates, and was indexed with SAMtools. The whole-genome data are summarized in Table 3.

Structural inter- and intra-chromosomal rearrangements were detected with Manta (Chen, Schulz-Trieglaff, et al. 2016) in the tumor-normal analysis mode.

The analyzed structural rearrangements were then visualized with the Integrative Genomics Viewer (http://software.broadinstitute.org/software/igv/), after which the rearranged sequences were constructed based on the whole-genome information for rearrangements. Comparing the tumor and matched normal translocation results, the regions shown on both were excluded. The rearranged sites from the WGS are summarized in Table 4.

3.6 Confirmation of selected rearrangements in cancer DNA

For amplification of the rearranged sequences, PCR primers were designed with Primer3. PCR primers for longer rearranged sequences (200-1,000 bp) were designed for candidate rearranged sites from the WGS data (marked as long PCR in Table 5). After the amplification of the DNAs from the paired tumor and normal samples, the rearranged sequences were confirmed by Sanger sequencing of the amplified tumor-specific PCR products. After exclusion of non-specific amplifications, PCR primers for shorter rearranged sequences at confirmed rearranged sites were designed again (marked as short PCR in Table 5), and specific rearranged sequences were confirmed again by PCR with short primers and by Sanger sequencing by employing DNAs from the paired tumor and normal samples. PCR was performed for each sequence under the following conditions: initial incubation at $95^{\circ} \mathrm{C}$ for 10 min , followed by 45 cycles of 30 s at $95^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at annealing temperature for each primer pairs, and 30 s at $72^{\circ} \mathrm{C}$ in a mixture containing 1X PCR buffer II (Roche, Mannheim, Germany) with 1.5
$\mathrm{mM} \mathrm{MgCl} 2, ~ 0.2 \mathrm{mM} \mathrm{dNTPs}, 10 \mathrm{pmol}$ of each primer, and of 10 ng of genomic DNA in a final volume of 20μ l. For some PCR amplifications, modifications were made for specific amplification as indicated in Table 3. For the amplification controls, GAPDH primers (Table 5) were used. The amplified products were purified using the AxyPrep PCR Clean up kit (Axygen, Union City, CA) to remove leftover primers, and were then sequenced with forward or reverse primers used in the PCR reaction (Tables 5).

3.7 Detection of rearranged sequences in plasma cell-free DNA

Cell-free DNA (cfDNA) from plasma was prepared using the QIAamp circulating nucleic acid kit (Qiagen, Hilden, Germany) according to the instruction manual, with an input plasma volume of 1 ml and an elution volume of $30 \mu \mathrm{l}$. PCR was performed under the same conditions as above, except that 2 $\mu 1$ of eluted cfDNA was used for each PCR reaction. The PCR product amplified from cfDNA for each sample was used for confirmation by Sanger sequencing.

To monitor the ctDNA levels in plasma, all available remnant plasma from the post-operative ctDNA-positive cases (GC4, GC8, GC9, GC14, GC15, GC17 and GC22) and plasmas from several selected post-operative ctDNA-negative cases (GC12, GC18, GC31, GC32, GC33 and GC34) was employed for the quantitative PCR. Quantitative PCR was performed at a one site for each sample, and the primer sequences were as indicated in Table 6. Quantitative PCR was carried out according to the manufacturer's protocol from FastStart Essential

DNA Probes Master (Roche) by the LightCycler ${ }^{\circledR} 96$ Real-Time PCR System (Roche) in a $25 \mu \mathrm{~L}$ reaction mixture constituted of $10 \mu \mathrm{~L} 2 \mathrm{x}$ FastStart Essential DNA Probes Master mix, $10 \mu \mathrm{~L}$ template DNA (out of a total of $30 \mu \mathrm{l}$ eluted cfDNA from 1 ml plasma), and primers (10 pmole each). To confirm the ctDNA negativity in pre-operative ctDNA negative cases (GC1, GC6, GC10, and GC12) by quantitative PCR, the $25 \mu \mathrm{~L}$ cfDNA (equivalent to $833 \mu \mathrm{~L}$ plasma) and $5 \mu \mathrm{~L}$ cfDNA (equivalent to $167 \mu \mathrm{~L}$ plasma) were employed for rearranged sequences and for the reference gene, $G A P D H$, respectively

3.8 Statistical analysis

In the analysis of pre-operative ctDNA positivity and clinical factors including T stage, N stage, clinical stage, and Lauren classification, Fisher's exact test was used. In the analysis of the correlation between post-operative ctDNA positivity and clinical recurrence, Fisher's exact test was also used with the consideration of post-operative ctDNA as positive 1) when any cancer-specific rearranged sequence was detected in any post-operative plasma sample within 12 months after surgery or 2) when ctDNA-positive cases detected only prior to clinical recurrence.
Table 1. Analysis of personalized cancer-specific rearranged sequences in gastric cancer patients

ID	Sex	Age	Recur	Stage (TNM)	Rearranged sites in WG-NGS	Primers designed for PCR sites	Cancer-specific PCR	Confirmed by Sanger Sequencing	Finally validated sites	PreOp ctDNA	PostOp ctDNA	$\begin{gathered} \text { Lead } \\ \text { time } \\ \text { (months) } \end{gathered}$
GC1	M	68	R	$\begin{gathered} \text { IIIA } \\ \text { (T3N2M0) } \\ \hline \end{gathered}$	48	12	7	4	4	-	-	
GC4	M	67	R	$\begin{gathered} \text { IIIC } \\ \text { (T4aN3bM0) } \end{gathered}$	44	7	3	3	3	+	+	9.4
GC6	M	64	R	$\begin{gathered} \text { IIIB } \\ (\mathrm{T} 3 \mathrm{~N} 3 \mathrm{aM} 0) \end{gathered}$	3	3	3	3	3	-	-	
GC7	M	57	R	$\begin{gathered} \text { IIIB } \\ \text { (T4aN2M0) } \\ \hline \end{gathered}$	3	3	3	1	1	-	-	
GC8	M	53	R	$\begin{gathered} \text { IIIC } \\ \text { (T4bN3aM0) } \\ \hline \end{gathered}$	8	6	4	3	2	+	+	-1.4
GC9	M	44	R	$\begin{gathered} \text { GIST } \\ \text { (T4N0M0) } \\ \hline \end{gathered}$	8	8	3	3	3	+	+	5
GC10	M	73	R	$\begin{gathered} \text { IIIB } \\ \text { (T4aN2M0) } \\ \hline \end{gathered}$	31	5	3	3	3	-	-	
GC11	M	70	R	$\begin{gathered} \text { IIIB } \\ \text { (T3N3aM0) } \\ \hline \end{gathered}$	90	12	6	5	5	+	+	5.6
GC12	M	71	R	$\begin{gathered} \text { IIIC } \\ \text { (T4aN3aM0) } \\ \hline \end{gathered}$	3	3	3	2	2	-	-	
GC14	M	53	R	$\begin{gathered} \text { IIIB } \\ \text { (T3N3bM0) } \\ \hline \end{gathered}$	25	11	4	2	2	-	+	0.7
GC15	M	42	R	$\begin{gathered} \text { IIIC } \\ \text { (T4bN3aM0) } \end{gathered}$	7	7	5	3	2	+	+	3.1
GC17	M	71	R	$\begin{gathered} \text { IV } \\ \text { (T4aN3bP1) } \\ \hline \end{gathered}$	16	12	8	5	5	+	+	*
GC18	M	41	R	$\begin{gathered} \text { IIB } \\ \text { (T3N1M0) } \\ \hline \end{gathered}$	6	5	4	2	2	-	-	
GC21	M	77	R	$\begin{gathered} \text { IIIC } \\ \text { (T4aN3aM0) } \\ \hline \end{gathered}$	40	13	6	6	5	-	-	
GC22	M	49	R	$\begin{gathered} \text { IV } \\ \text { (T4aN3bP1) } \end{gathered}$	23	9	3	3	3	+	+	*

GC31	M	54	N	$\begin{gathered} \text { IIA } \\ \text { (T3N0M0) } \\ \hline \end{gathered}$	6	5	4	3	3	+	-
GC32	M	70	R	$\begin{gathered} \text { IIIC } \\ \text { (T4bN2M0) } \end{gathered}$	11	8	8	8	8	+	-
GC33	M	44	N	$\begin{gathered} \text { IIIC } \\ \text { (T4bN3bM0) } \\ \hline \end{gathered}$	6	6	6	6	6	+	-
GC34	M	63	N	$\begin{gathered} \text { IIIC } \\ \text { (T4aN3aM0) } \\ \hline \end{gathered}$	3	3	1	1	1	+	-
GC2**	F	62	R	$\begin{gathered} \text { IIB } \\ \text { (T3N1M0) } \\ \hline \end{gathered}$	0	0	0	0	0		
GC3**	M	64	R	$\begin{gathered} \text { IIIB } \\ \text { (T4aN2M0) } \end{gathered}$	0	0	0	0	0		
GC5**	F	72	R	$\begin{gathered} \text { IIIC } \\ \text { (T4aN3bM0) } \\ \hline \end{gathered}$	0	0	0	0	0		
GC13**	F	73	R	$\begin{gathered} \text { IIIA } \\ \text { (T3N2M0) } \\ \hline \end{gathered}$	0	0	0	0	0		
GC23**	M	60	R	$\begin{gathered} \text { IIIA } \\ \text { (T3N2M0) } \end{gathered}$	3	3	0	0	0		
GC35**	M	60	N	$\begin{gathered} \text { IIA } \\ \text { (T3N0M0) } \\ \hline \end{gathered}$	0	0	0	0	0		
Total					384	141	84	66	63		

[^0]Table 2. Clinical information for gastric cancer patients accrued in the present study

ID	Lauren	Histology*	Recurrent sites	Adjuvant Chemotherapy
GC1	Intestinal	Mod	Celiac axis LN	No
GC4	Intestinal	Poor + Mucin	Pancreas, Aorto-caval LN	Yes
GC6	Intestinal	Mod + Mucin	GJ Anastomosis, peritoneum, pleural	No
GC7	Intestinal	Mod	Duodenal stump, Porto-caval LN	No
GC8	Intestinal	Poor + Mucin	Peritoneum	Yes (palliative)
GC9		GIST	Liver, peritoneum	No
GC10	Intestinal	Mod + Neuro	Liver	No
GC11	Intestinal	Mod	Liver	No
GC12	Diffuse	Poor	Abdominal wall, mesentery	No
GC14	Intestinal	Poor	Aortico-caval and porto-caval LN	Yes
GC15	Diffuse	Poor	Para-aortic LN	Yes
GC17	Mixed	Poor + Mod	Bone, Peritoneum	Yes (palliative)
GC18	Diffuse	Signet	Colon	No
GC21	Intestinal	Mucin	Peritoneum	Yes
GC22	Mixed	Poor	Duodenal stump, para-arotic and thorax LN, peritoneum	Yes (palliative)
GC31	Intestinal	Mod	-	Yes
GC32	Diffuse	Poor	Gastrojejunostomy site	Yes
GC33	Intestinal	Poor		Yes
GC34	Diffuse	Poor + Mucin	-	Yes
GC2	Diffuse	Signet	Ovary	No
GC3	Intestinal	Mod	Peritoneum	No
GC5	Diffuse	Poor	LN (celiac, SMA) Peritoneum	Yes
GC13	Intestinal	Mod	Abdominal wall, Peritoneum	No
GC23	Intestinal	Poor	Liver	Yes
CG35	Diffuse	Poor	-	Yes
*Mod, moderate differentiated adenocarcinoma; Poor, poorly differentiated adenocarcinoma; Mucin, mucinous adenocarcinoma; Signet, signet ring cell carcinoma; GIST, gastrointestinal stromal tumor.				

Table 3. The summary of whole genome shotgun data

Sam ples*	Sequencing reads**	Read length (bp)	$\begin{gathered} \text { Total } \\ \text { yield } \\ \text { (Mbp) } \end{gathered}$	Throughput mean depth (X)	$\begin{aligned} & \text { De-duplicated } \\ & \text { reads } \end{aligned}$	$\begin{gathered} \text { De-duplicated } \\ \text { reads \% } \\ \text { (out of total } \\ \text { reads) } \end{gathered}$	Mappable reads	Mappable reads $\%$ (out of De-duplicated reads)	$\begin{gathered} \text { Mappable } \\ \text { yield } \\ \text { (Mbp) } \end{gathered}$	$\begin{gathered} \text { Mappable } \\ \text { mean } \\ \text { depth }(\mathbf{X}) \end{gathered}$	$\% \geq 20 X$ coverage	$\% \geq 30 \mathrm{X}$ coverage
C1	709,303,590	150	106,395	37.2	621,425,520	87.6	596,493,644	96.0	89,474	31.3	87.9	59.3
C2	781,193,946	150	117,179	41.0	668,308,648	85.5	639,376,982	95.7	95,906	33.5	95.7	80.2
C3	712,376,406	150	106,856	37.4	626,052,682	87.9	598,921,057	95.7	89,838	31.4	91.7	69.3
C4	698,425,098	150	104,763	36.6	605,139,392	86.6	577,735,166	95.5	86,660	30.3	87.8	55.9
C5	791,615,928	150	118,742	41.5	680,288,418	85.9	650,897,946	95.7	97,634	34.2	95.4	77.7
C6	708,000,838	150	106,200	37.2	613,134,292	86.6	585,320,581	95.5	87,798	30.7	91.2	63.7
C7	812,888,522	150	121,933	42.7	693,087,484	85.3	660,310,511	95.3	99,046	34.6	93.9	80.3
C8	896,810,136	150	134,521	47.1	736,514,414	82.1	696,906,858	94.6	104,536	36.6	95.3	85.3
C9	844,658,256	150	126,698	44.3	705,211,798	83.5	670,322,267	95.1	100,548	35.2	91.3	76.3
C10	790,685,234	150	118,602	41.5	678,658,800	85.8	648,873,581	95.6	97,331	34.0	94.1	74.1
C11	793,476,142	150	119,021	41.6	728,996,018	91.9	703,929,460	96.6	105,589	36.9	92.5	68.7
C12	875,516,716	150	131,327	45.9	796,699,078	91.0	767,490,239	96.3	115,123	40.3	95.0	81.3
C13	833,771,924	150	125,065	43.7	753,325,656	90.4	720,937,639	95.7	108,140	37.8	97.2	83.9
C14	743,913,492	150	111,587	39.0	674,596,142	90.7	642,903,243	95.3	96,435	33.7	93.5	69.9
C15	774,265,852	150	116,139	40.6	706,541,954	91.3	671,262,631	95.0	100,689	35.2	94.7	73.3
C17	818,329,106	150	122,749	42.9	744,193,362	90.9	711,771,309	95.6	106,765	37.3	95.1	78.7
C18	832,615,954	150	124,892	43.7	757,690,626	91.0	721,345,196	95.2	108,201	37.9	96.2	86.2
C21	932,670,882	150	139,900	48.9	849,929,324	91.1	830,675,054	97.7	124,601	43.6	85.1	69.8
C22	792,898,934	150	118,934	41.6	729,640,526	92.0	689,123,721	94.4	103,368	36.2	89.0	63.7

$$
\begin{aligned}
& \begin{array}{l}
786,588,769 \\
754,591,355 \\
720,588,360 \\
710,958,849 \\
611,376,192 \\
628,028,992 \\
598,474,285 \\
588,922,198 \\
687,210,434 \\
602,626,990 \\
596,709,074 \\
619,773,551 \\
600,064,513 \\
602,714,906 \\
608,036,087 \\
611,023,215 \\
712,859,717 \\
591,066,010 \\
656,750,764 \\
650696589 \\
642778700 \\
698284822 \\
756408858 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
820,943,624 \\
795,751,050 \\
757,429,632 \\
751,909,772 \\
654,636,996 \\
670,048,280 \\
629,405,906 \\
618,419,722 \\
719,723,830 \\
633,742,190 \\
626,999,518 \\
650,189,616 \\
634,288,872 \\
636,638,606 \\
638,267,818 \\
636,986,404 \\
763,407,340 \\
636,499,610 \\
699,560,412 \\
697512430 \\
690719758 \\
740433446 \\
807540784 \\
\hline
\end{array}
\end{aligned}
$$

N21	$797,243,836$	150	119,586	42	738823662	93	696666129	94	104499	37	95	82
N22	$737,750,022$	150	110,662	39	682215916	93	641215766	94	96182	34	94	74
N23	$757,958,182$	150	113,693	40	698074374	92	656898693	94	98534	35	94	76
31N	$923,352,638$	150	138,502	49	$855,038,666$	93	$807,365,803$	94	121,104	42	97	91
32N	$826,421,956$	150	123,963	43	$762,635,160$	92	$720,791,758$	95	108,118	38	96	86
33 N	$810,046,520$	150	121,506	43	$739,885,782$	91	$699,652,296$	95	104,947	37	96	84
34 N	$814,124,764$	150	122,118	43	$757,778,802$	93	$716,601,822$	95	107,490	38	95	84
35N	$819,133,546$	150	122,870	43	$757,192,374$	92	$708,490,893$	94	106,273	37	96	84

[^1]Table 4. Translocation sites identified by whole genome sequencing.

Sample	Translocation number	Chromosome at site 1	Location at site 1	REF at site 1	Gene at site 1	Chromosome at site 2	Location at site 2	REF at site 2	Gene at site 2
1	1	2	145462032	G	TEX41	12	25128395	T	
1	2	2	133040364	A		17	43371479	C	MAP3K14
1	3	8	52307387	T	PXDNL	10	66095917	A	
1	4	8	53827530	A		10	59034193	C	
1	5	8	90474961	C		10	58859380	A	
1	6	8	92124417	C	LRRC69	10	66061499	T	
1	7	9	78556898	A	PCSK5	14	90634346	A	KCNK13
1	8	9	105124337	A		14	53007612	T	TXNDC16
1	9	15	25646343	T	UBE3A	17	37061676	T	LASP1
1	10	15	40391906	G	BMF	17	70845010	A	SLC39A11
1	11	15	41126725	G	RP11-532F12.5	17	55407764	G	MSI2
1	12	15	48245818	C	RP11-208K4.1	17	66029771	A	KPNA2
1	13	15	52314553	G	MAPK6	17	66049593	C	
1	14	15	53427433	G		17	48603566	C	MYCBPAP
1	15	15	63232698	A		17	43377923	G	MAP3K14
1	16	15	63244483	G		17	37031108	A	LASP1
1	17	15	63244902	C		17	55406950	G	MSI2
1	18	15	7419677	C		17	77338652	C	RBFOX3
1	19	15	74120551	G		17	74466269	A	RHBDF2
1	20	15	74274133	T	STOML1	17	48548049	G	ACSF2

15	74476625	A	STRA6	17	34026330	A	AP2B1
15	74478740	G	STRA6	17	70833969	G	SLC39A11
15	75054200	G		17	37056443	G	LASP1
15	75149084	G	SCAMP2	17	37059146	G	LASP1
15	75161399	G	SCAMP2	17	38288961	T	MSL1
15	79055858	C	ADAMTS7	17	55386803	T	MSI2
15	90748744	T	SEMA4B	17	48667643	C	CACNA1G
15	95556518	C		17	59788071	A	BRIP1
15	100573965	A	ADAMTS17	17	48603536	G	MYCBPAP
15	101636838	C		17	66032867	T	KPNA2
15	101684211	G		17	55780255	C	
15	40332699	C	SRP14	20	62407003	C	ZBTB46
15	63249297	C		20	57657700	T	
15	79070679	G	ADAMTS7	20	38851307	G	
15	85370560	C	ALPK3	20	34734321	T	EPB41L1
15	85377460	C	ALPK3	20	36981365	T	LBP
15	89737649	G	ABHD2	20	37083167	G	
17	30416248	T	RP11-640N20.6	20	51171125	T	
17	37031969	G	LASP1	20	57649834	T	
17	38283027	C	MSL1	20	62827275	T	MYT1
17	41445034	A		20	51170140	A	
17	48581302	C	RP11-94C24.6	20	37074268	T	SNHG11
17	55403234	T	MSI2	20	62503097	C	TPD52L2
17	55787511	A		20	21088452	A	
17	55841215	T		20	32794824	T	ASIP

56908130	T	PPM1E
59491073	A	C17orf82
66066927	A	
972142	A	AGRN
110197452	C	GSTM4
22301578	C	CELA3B
38241433	A	
42033303	G	HIVEP3
42078237	A	HIVEP3
97217404	T	ARID5A
97251183	T	
177913516	A	AC079305.11
177919086	A	AC079305.11
178191754	A	NFE2L2
103031286	A	
145450285	T	
189782119	T	LEPREL1
153039080	A	GRIA1
16964680	C	
110190096	A	
110190835	T	
17297224	C	
94351854	A	MCTP1
160040535	A	
130793704	C	

6	39222246	T		17	79874698	G

$$
\begin{aligned}
& \begin{array}{cc}
29066022 & \text { A } \\
104387039 & \text { C } \\
29065925 & \mathrm{~T} \\
30221916 & \mathrm{~T} \\
59221115 & \mathrm{~T} \\
9699004 & \mathrm{~T} \\
16272773 & \mathrm{~A} \\
11622313 & \mathrm{G} \\
29065805 & \mathrm{G} \\
30036 & \mathrm{C} \\
64740469 & \mathrm{~T} \\
131456462 & \mathrm{~A} \\
124210751 & \mathrm{~T} \\
128966342 & \mathrm{G} \\
135746039 & \mathrm{~T} \\
135610016 & \mathrm{G} \\
106011712 & \mathrm{~T} \\
30195284 & \mathrm{~T} \\
29121678 & \mathrm{~T} \\
68794838 & \mathrm{~T} \\
73145290 & \mathrm{C} \\
70184904 & \mathrm{~A} \\
45979479 & \mathrm{C} \\
45823894 & \mathrm{G} \\
129607610 & \mathrm{G} \\
\hline
\end{array}
\end{aligned}
$$

Ј

THSD7B
LSAMP
MAEA
PDZD2

PHACTR1
RPA3-AS1
RPA3-AS1
GS1-259H13.10

TC2N
RP11-616M22.7
ANKRD12

으으으으으으으으으으으으으으으

29066121	A	TTC28
29066121	A	TTC28
84756115	T	SEMA3D
85033096	C	
119943377	T	CCDC60
24804903	A	FAM65B
85608417	T	RALYL
15607116	C	PTPRO
66906252	C	GRIP1
1925467	A	GMDS
1310844	C	FOXQ1
1310537	C	FOXQ1
158794	G	NPRL3
17861598	A	
77217122	T	PTPN12
77231495	G	PTPN12
141553819	A	AGO2
90041795	C	RHCG
89934031	T	LINC00925
90051235	A	RP11-429B14.4
48580141	G	RP11-94C24.6
48713281	T	ABCC3
2651295	T	
2473331	G	ZNF343
11731565	C	

PSKH2
RP11-17A4.2
RIMS2
SLC45A4
FOSL1
OVOL1

ANO2
SEC16A
ABCB9
LMF1
LMF1
NUP85

SLC9A3R1
CD300LF
GOSR1
VPS53
STXBP4
CTB-187M2.1
ANKRD12

$$
\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \infty \infty \infty \infty \infty \infty \infty \infty \text { a a a a a a a }
$$

CTD-2315E11.1
PIWIL3

YWHAE
GRIK5

SOGA2
TAF4
KIF3B
TM9SF4
TTC28
RTN4R
SLC6A6
CPNE4
CPNE4
CDK14
GPC6
RAD51B

11732262
90670137
62769851
42635927
25126291
42623287
11731290
30215705
1272596
42541106
11732318
8833715
60606771
30892483
30731363
29065601
89902939
20248979
14483301
131875735
131876069
90330898
29634089
94807007
68887971

RP11-417J8.6
RP11-782C8.2
RP11-435B5.6
MBD5
TMEM131
FSTL1
RB1CC1
SNX30
SNX30
PTPRB
IGSF21
FABP4
BCAR3
RP11-148B18.3
RP11-293P20.2
ZNF710
AP005530.1
KIR3DL2
TTC28
TTC28
PROCA1
PROCA1
KRT18P55

BCAS1
BCAS1
BCAS1
ZNF146
LGALS16
CTC-525D6.1
RFPL4AL1
ZNF321P
CAPNS1
AF038458.5

24375698	C	RP11-293P20.2
46103503	T	GPBP1L1
145374188	T	RP11-458D21.1
47613460	T	CORIN
7844076	T	AFAP1
87336675	G	MAPK10
11642124	T	
74902343	T	SLCO2B1
75257094	A	
75257968	G	
66428317	A	RBM4
55368019	T	OR4C11
65214910	A	AC069368.3
59724727	G	
60110685	T	
60111153	G	
64500896	C	RP11-467L24.1
25685640	T	
25686017	T	
26494043	C	NLK
28190455	C	SSH2
36999319	A	C17orf98
37246338	C	PLXDC1
38173903	G	MED24
38365946	G	

$$
\begin{gathered}
54060721 \\
39044331 \\
39028706 \\
39598597 \\
37098153 \\
39598051 \\
58647008 \\
55595888 \\
56616341 \\
30053169 \\
56179847 \\
38435979 \\
173352955 \\
173439896 \\
23498008 \\
9705589 \\
31731836 \\
31731836 \\
11732460 \\
58123488 \\
11733230 \\
82944416 \\
34511110 \\
37887028 \\
68062181
\end{gathered}
$$

సి

5	103963127	T	RP11-6N13.1	X	11732697	T	
5	132379607	A		X	53221663	C	KDM5C
8	5503321	A		11	12979234	T	
9	18635792	G	ADAMTSL1	10	37144716	T	
9	18912570	C	ADAMTSL1	10	36306928	A	
9	20410507	A	MLLT3	10	33550559	A	NRP1
9	37810397	T	DCAF10	10	33413787	A	
9	66262518	T		10	60970453	T	PHYHIPL
10	73442031	A	CDH23	19	52287943	G	
18	24598152	T	CHST9	22	29065756	A	TTC28
9	11124	G		12	80669072	A	OTOGL
11	134914930	G		21	45313853	C	AGPAT3
12	123299698	C	CCDC62	17	46018530	T	PNPO
4	177853100	C		14	37810739	T	MIPOL1
6	39175861	C	KCNK5	9	32999075	C	APTX
6	41712723	G	PGC	11	1021668	T	MUC6
6	127886305	A	C6orf58	11	69640202	G	
14	42437279	G		17	3811957	C	P2RX1
22	29065760	T	TTC28	X	65132456	G	
1	168764386	G	LINC00626	11	65757548	C	
1	35052583	A		12	120197007	C	CIT
2	133516150	T	NCKAP5	17	3362886	G	SPATA22
2	194974003	G		18	28658710	C	DSC2
3	180878044	T		12	109918025	A	UBE3B
7	66088367	A		21	14560336	T	

32	7	7	74564154	A	GTF2IRD2B	21	10898037	C	
32	8	7	158620742	A	ESYT2	21	18359927	T	
32	9	8	11610320	A	GATA4	11	70768757	G	SHANK2
32	10	8	14033505	G	SGCZ	18	47803005	A	MBD1
32	11	9	76686985	A		18	781544	A	YES1
33	1	3	166123308	A		16	78629977	T	wwox
33	2	8	121544042	A		10	4748952	A	
33	3	11	65244593	A		22	43563464	C	TTLL12
33	4	11	68622656	C		22	37970728	G	LGALS2
33	5	11	69050618	A		22	20918689	C	MED15
33	6	11	96602253	A		22	43564962	C	TTLL12
34	1	1	161086765	C	PFDN2	10	77719467	T	C10orfl 1
34	2	3	43129443	A	POMGNT2	22	29065650	A	TTC28
34	3	4	85859671	G	WDFY3	22	29065908	T	TTC28

Table 5. Rearranged sites for the confirmation by PCR amplifications.

Sample	Long or Short PCR	Primers	Fusion site 1		Fusion site 2		Primer sequences for fusion site 1	Primer sequences for fusion site 2	```Modified PCR conditions```	Second primer sequences for fusion site 1***	Second primer sequences for fusion site $2^{* * *}$
			chro mos ome	location	chro mos ome	location					
GC1	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC KN1-4	8	52307387	10	66095917	TGACACATCCTTTC CCTTCC	ACATGGCTTATGCC CTTCAG			
GC1	Long PCR	GC KN1-5	9	78556898	14	90634346	tCCCTGTCCTATCG GTTTTG	tTCCTGGCTTCAAG CAATCT			
GC1	Long PCR	GC KN1-2	9	105124337	14	53007612	TGAGATTCTGGGG GACTATCA	AAAAGGACAGGGG CTTAGTCA			
GC1	Long PCR	GC 1-4	15	52314553	15	79070679	AGCTCCAGGGCTC AAGCAATCT	GGGAGAGAACCCA GGGCAACCAT			
GC1	Long PCR	GC N1-6	15	25646343	17	37061676	TCACACCTGTAATC CCAGCA	AACATGGTTTTGGC CTTTGT			
GC1	Long PCR	GC KN1-3	15	74478740	17	70833969	agcctiagcctat GAAAGCA	ATCAACGAAACTTG GAAGCA			
GC1	Long PCR	GC N1-7	15	75149084	17	37059746	CAGCATATCCCTCC AAGGAA	TCTGTAAACTGAGG GGGTCA			
GC1	Long PCR	GC 1-1	15	79055858	17	55386803	CTGAACCCCTCAGT TCCAAACA	GAAAATGCACTGTA GAAGAATCTTTGAA C			
GC1	Long PCR	GC N1-8	15	89131649	17	38288961	TGGTGGCTCATGC CTATAAA	tgagacagggaga ATTGCTTG			
GC1	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC 1-3	15	40332699	20	62407003	GCCTAAGCAGGGC TGTATAATGAG	TGTGAGAAACATTC CAGCAAGCACT			
GC1	Long PCR	GC 1-2	15	85377460	20	36981365	GCAAGTTGCACAAA GGGATTGAGTC	tTtATGTTCCGTGA ATTTCCTATCAA			
GC1	Long PCR	GC KN1-1	17	56098130	20	40123512	ATGGTGAAACCCT GCCTCTA	TTAGGCTGCAAGG CACTTTT			
GC4	Long PCR	GC 4-3	2	178191754	12	112118374	CTATAGGGTCTGAA GCTCAAGAGAAG	GGAAGGTGATGGG GAATTGAAAG			
GC4	Long PCR	GC 4-6	6	160040535	7	29925262	TGGGCGGAGTATA GGAGTTG	AGGAATATGTGTGT TGGGGG			
GC4	Long PCR	GC 4-7	6	160040535	17	79874698	ACACTCTGCGCTCT TGGAGT	cCATCATTCTTGGA GCGTTT			
GC4	Long PCR	GC 4-2	7	71465814	13	29472417	CCAAGCCTAAATAG TTACATTGGAAAAT TC	GATAATGTCACAAT CAGCAGGGATAC			
GC4	Long PCR	GC 4-5	10	32339793	12	113464446	ACCGTGAAGGGCC TATATCC	ATGCAGAACTGCC CTTGAGT			

$$
\begin{aligned}
& \text { GGTTGGGATGGCT } \\
& \text { GTATTGAAGA }
\end{aligned}
$$

TATATACAGAAGGA GCAGGATTGAGAA GCTCATTGCTACCA GGGTGATCAGAG
CTGAGGTAAG GACCCTCAAGTGG CTCTGGTAGTC gCACCAGCACACC CAGCTTCTAC GAAATGGTGCCATT
GCTACATGA CAAGCATATGGAAA AACTTATTTAATCC AGTA氐 GGGAGA CGATGCTCTGATCT CGATGCTCTGATCT
TGAAGC
TGTGTGTGTTTATG

TGTTTTGACAAATG | 00 |
| :--- |
| k |
| k |
| 4 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 | GGCGTGCCCCGAC TATGTGTCTGACCT

 gCCACGGCAAGAC TATGATTGTGATG AACCAAGGGCTAA GGGAAAAGAAGAC
TTGCTGAGGGGGA

$$
\begin{aligned}
& \text { GGCTGAGGAATAA } \\
& \text { GGGGATGAG } \\
& \text { GTTTTCAAACTATC } \\
& \text { CTTTGTGACATACA } \\
& \text { G } \\
& \text { AATCTTCCTCCCCT } \\
& \text { CCCTTTCACTTAC } \\
& \text { AAAACAGAGCCTG } \\
& \text { AGGCAAAGAAC } \\
& \text { CCAAATTCCTATTA } \\
& \text { GAGGCAGTCCAAA } \\
& \text { TG } \\
& \text { GTTTGCCCAAACTC } \\
& \text { ACAGAGCTAG } \\
& \text { TTGGCCCTAACTG } \\
& \text { GTCACACTTC } \\
& \text { GAATCATAGGAGG } \\
& \text { GACCATAAATTC } \\
& \text { CCGGTACCTCAGA } \\
& \text { TGGAAAT } \\
& \text { TAATGGGGGATAT } \\
& \text { GCTGGAG } \\
& \text { TTTTTCCCCTCCTC } \\
& \text { ACACTC } \\
& \text { CACAGCATATGGT } \\
& \text { GCAATCCTTTG } \\
& \text { CACATTTGATGCTT } \\
& \text { GGGAAACTC } \\
& \text { GCTATTTGTCGGAA } \\
& \text { CAGGAGAGACC } \\
& \text { TTTGACCAGCTACA } \\
& \text { CTGCCTATATTC } \\
& \text { CAAATGTGGGAGC } \\
& \text { AGGAGGTATATG } \\
& \text { CGGAAGGAAGATT } \\
& \text { TACTATCAGCTCTA } \\
& \text { C } \\
& \text { GCTAAGCCCAATC } \\
& \text { CTCATGTGTC } \\
& \text { CCGTGCCCAACCT } \\
& \text { ATGTATG } \\
& \text { AACAAGTTTCACCC } \\
& \text { CTCTGG }
\end{aligned}
$$

 O

$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{N} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \infty \\ & \text { مٌ } \\ & \text { م } \end{aligned}$		$\begin{aligned} & \underset{N}{N} \\ & \stackrel{N}{N} \\ & \underset{\sim}{n} \end{aligned}$			$\begin{aligned} & \stackrel{\sim}{0} \\ & \text { O} \\ & \text { O} \\ & \text { N- } \end{aligned}$	$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{\circ}{0} \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \underset{\sigma}{N} \\ & \text { స్ల } \end{aligned}$	$\begin{aligned} & \stackrel{\Omega}{\Sigma} \\ & \underset{\sim}{\sim} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { ষ } \\ & \text { O} \\ & \text { © } \end{aligned}$	N N N O	$\begin{aligned} & \text { O} \\ & \text { O్ల } \end{aligned}$						\circ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$ $\stackrel{e}{6}$	N
$\stackrel{\rightharpoonup}{ }$	\bigcirc	$\bar{\sim}$	$\bar{\sim}$	$\stackrel{\square}{*}$	\wedge	N	N	$\stackrel{\sim}{\square}$	\pm	$\stackrel{\sim}{1}$	$\stackrel{\sim}{2}$	$\stackrel{\sim}{ }$	F	σ	0	の	の	の	\cdots
$\begin{aligned} & \text { B } \\ & \text { on } \\ & \text { © } \\ & \text { in } \end{aligned}$	$\stackrel{\circ}{\stackrel{1}{2}}$ $\stackrel{0}{6}$ $\stackrel{e}{0}$	$\stackrel{\infty}{\infty}$ $\stackrel{\infty}{\infty}$ $\stackrel{\infty}{\circ}$ $\stackrel{\infty}{\sim}$	$\begin{aligned} & \text { 毋O } \\ & \stackrel{N}{N} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0.0 \\ & 0 \\ & \text { M } \\ & \hline \end{aligned}$				m 8 $\stackrel{0}{\circ}$ $\stackrel{0}{4}$	N © O $\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \stackrel{0}{む} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \overline{\mathrm{G}} \\ & \underset{\hat{N}}{0} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \mathbb{O} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\infty}{\circ} \end{aligned}$			$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { o } \\ & \stackrel{\sim}{\sim} \\ & \end{aligned}$	$\begin{aligned} & \text { م } \\ & \text { No } \\ & \text { ס్ల } \end{aligned}$	$\begin{aligned} & \text { む } \\ & \stackrel{\circ}{0} \\ & \stackrel{\sim}{0} \end{aligned}$	N O O ¢
$\stackrel{ }{\sim}$	\pm	\ulcorner	\ulcorner	∞	\sim	∞	－	\bigcirc	\wedge	∞	∞	F	$\stackrel{m}{\square}$	∞	∞	∞	∞	∞	∞
$\begin{aligned} & \text { U } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \bar{j} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { ¢ } \\ & \text { ט} \end{aligned}$	$\begin{aligned} & \bar{\delta} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O} \\ & \text { U0 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { U } \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \bar{\alpha} \\ & \substack{\infty \\ \mathbf{c} \\ 0 \\ \hline} \end{aligned}$	$\begin{aligned} & \text { m } \\ & \sum_{0}^{\infty} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { d } \\ & \text { ç } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \ddagger \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { గ్ర } \\ & \text { OU } \end{aligned}$	$\begin{aligned} & \text { Tj } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \bar{\sigma} \\ & \text { ण } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Ó } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{y}{2} \\ & \mathbf{y} \\ & \hline 0 \end{aligned}$	\square ¢ ¢ 0

J
U
¢ O－0 OO స్ N仓̀ స్ల Ơ © Ọ © © Ơ Ơ OO O O Oi O O

GC9	Long	GC 9-3	9	131288019	16	30195284	tTCAGTATGGATGT GGTCCTTTAACTCG	gGaAAGGGGAACT TGGTCTTTTCTTG
GC9	Long	GC KN9-2	9	138236266	16	29121678	attcctacciagca AAGTGG	CAACACATACAAAA
GC10	Long PCR	GC 10-3	1	23155464	20	45823894	CTAGCAGTAGGGG AAGGTGAC	CTGAATGTTCCCTG GAGAGATA
GC10	Long PCR	GC 10-14	2	138364748	12	2993827	GTTAATGGAAGGA GAAGTGC	ATGTTTATCCTGAG TTCTTGCC
GC10	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC 10-12	6	13191211	11	31663176	CTGGGATAACTGG GAGGGAA	GACCTGAGAAAGA GATTGTG
GC10	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC 10-4	14	92292467	17	41541673	CGGAGTTTGCAAT GAGCAGAGACCAC	atatatccacagtc ATCGTTGGAGTTTT C
GC10	Long PCR	GC 10-11	18	9261632	21	42913288	GAGTTGTAGGTAGT TTGGTG	AATGGGTGGGTTTT TTTGCT
GC11	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC N11-1	1	19249595	13	1066685144	TTGGGGACAGGAA TCACAAT	AGCAATTATGTTGA TGCCAAA
GC11	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC11	1	204523693	17	70560379	TAGCAATGGCAAG CAGAATG	GTGTCAGCTTGCT GCTCTTG
GC11	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	$\begin{gathered} \text { GC } \\ \text { KN11-1 } \end{gathered}$	1	38167534	20	62355028	tGGAGATGGTTTTG GTTTAGG	CCCCAAAAGTGCT GGAGTTA
GC11	Long PCR	GC KN11-2	1	46105734	X	70730016	AAAATAGCCGGGC ATAATGG	TGGGGGCATCTAT ATCATCC
GC11	Long	$\begin{gathered} \text { GC } \\ \text { KN11-3 } \end{gathered}$	2	38820590	6	126348359	TGGAAATGAATAAA GCAGGAA	ATCTGTT TGGGTGCTCTTTTC
GC11	Long PCR	GC11	2	110927394	11	17766657	AACACAATCTCATA TTACTACTGCTTG	TGCTGAGTGAGGG TACATCG
GC11	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC11	2	216512759	21	38791413	gacggGatttcac CATGTTC	gGcAAACTATAATG GTTGTTGGA
GC11	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC11	4	21169457	8	85608417	CTTCCTGGCAATTG CATTC	CAAATACAGCATGT GAAAAGGTG
GC11	Long PCR	GC11	8	11439657	9	139346288	GGTGGCAGGCACA TGTAATC	CAGCACTCAGAAT GCAAATGA
GC11	$\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$	GC11	8	145273127	16	958249	ATGACGGCCTGAC TGGAATA	GGAAAGTGGGATG CTGTCTC
GC11	Long PCR	GC11	10	58441082	X	11732262	TCATGAGTAAAGAA GATCACCAAAA	GGTCATTCAGGGTT TTGGTG
GC11	Long PCR	GC11	15	101463350	17	1272596	CCTGGCTCTTCTAG CTCCAC	TTTTGTTCAAATTTC TGTGCTTT

 CCTGATGCA
AAGAGGAAG
GA GA

[^2]| GC12 GC12 | Long
 PCR
 Long
 PCR | GC12 GC12 | 8 | 105813499 (46269287 | 22 15 | 29065601 89902939 | CAGCAAGTGTGAG CCAAAAG GAATGGAGTTTTTC TCTTGTTGG | TGGGTATATtTTGG GAAATAGTAGA GGTTCCTGCCCCA AACAC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GC12 | Long PCR | GC N12-3 | 10 | 46964222 | 22 | 20248979 | CCGTGGGTACTTTC CTGATG | GTTGGTGGCCTTC AAGACTG |
| GC14 | Long PCR | GC N14-1 | 1 | 41689552 | 3 | 14483301 | CAGATGGAAGGAG TCAGCAT | GGGGTtTTGTTGTG CTTTTG |
| GC14 | Long PCR | $\begin{gathered} \text { GC } \\ \text { KN14-4 } \end{gathered}$ | 2 | 189847931 | 7 | 90330293 | $\begin{aligned} & \text { GGCCTACTTCATTT } \\ & \text { CCACTGA } \end{aligned}$ | CCACGAAGGAAAA AGGGTTA |
| GC14 | Long PCR | $\begin{gathered} \text { GC } \\ \text { KN14-2 } \end{gathered}$ | 3 | 107819921 | 14 | 68887971 | АТТТСТССССТСТG CACACA | GGCAGGAACATGA AAGCAGT |
| GC14 | Long
 PCR | GC14 | 4 | 19539 | 7 | 18094813 | CAGTAGGAGAGCA GGGTGAT | AGTTAGCCAGGAT GGTCTTG |
| GC14 | $\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$ | GC14 | 5 | 166483237 | 12 | 71020366 | GCAAGCAAGAAAG GAGAAGA | tTCCCATCTATTCC AGTCAAG |
| GC14 | Long PCR | GC14 | 6 | 51481953 | 7 | 18195957 | CACCACTGTAGGC CAACTCTAA | TTGTTTTGAGGCCA ACTTGA |
| GC14 | Long PCR | $\begin{gathered} \text { GC } \\ \text { KN14-1 } \end{gathered}$ | 6 | 13191453 | X | 123827677 | CACATGCTGCTGC GTAATTT | TAATAGCCAACCCC AAAGCA |
| GC14 | $\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$ | GC N14-2 | 7 | 69344263 | 10 | 106547242 | AGGGATTGCTATTG CTGAGG | CATCATTGTCCCTT TTCATGG |
| GC14 | $\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$ | GC14 | 11 | 16996591 | 17 | 17791698 | CTTAGTTTGCCCAC CATAGC | gaccctgtcactg GGAATAG |
| GC14 | Long
 PCR | GC14 | 14 | 68907674 | 17 | 71217646 | CATGTTATTTCTGG TGCTGTGAA | ACTGAAAGTAAAGA ACATTACTCCTTC |
| GC14 | Long PCR | $\begin{gathered} \text { GC } \\ \text { KN14-3 } \end{gathered}$ | 16 | 67388976 | 17 | 71217432 | CCAGCAATCATGTT CTTTGGT | GGCAAC
 CAATCCTGATCTTG |
| GC15 | Long PCR | GC15 | 1 | 28242429 | 17 | 40739970 | CATCATTGTCCCTT TTCATGG | GTCAGGCTGGTCT CGAACTC |
| GC15 | Long PCR | GC N15-2 | 7 | 5362803 | 17 | 40516485 | GAGCCTAGGCCTC GAGAGAG | CTGGCCAAAATGG TGAAACT |
| GC15 | $\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$ | GC15 | 8 | 22693532 | 9 | 28470635 | CTtTCAATGACCGG CTCTTC | tCATCCAGGCTCTC ACACTG |
| GC15 | $\begin{aligned} & \text { Long } \\ & \text { PCR } \end{aligned}$ | GC N15-3 | 9 | 74301829 | X | 69832219 | AAATGGACCGTGA AGCCATA | tacatcatgcccag CTTTTAAG |
| GC15 | Long PCR | GC N15-4 | 12 | 39605710 | X | 69891944 | GATGCAGAAAAGG CCTTCAA | tTCTCCCCATtATT GCTGCT |

[^3]
\qquad CCCTGCAAATGATG GTCAAT AACAGACTTTCCCG

区

	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{6}{7} \\ & \stackrel{+}{+} \end{aligned}$	응 $\stackrel{\circ}{8}$ $\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { N } \end{aligned}$			읃 응 ®	$\begin{aligned} & \underset{\sim}{\underset{O}{0}} \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{\circ}{0}$ $\stackrel{N}{0}$ ©	N O 웅		N 0 0 		$\begin{aligned} & \stackrel{\infty}{\sim} \\ & \underset{\sim}{\infty} \\ & \stackrel{0}{0} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \ddot{\circ} \\ & \underset{N}{\circ} \\ & \stackrel{\circ}{N} \\ & \underset{y}{2} \end{aligned}$			「
\times	$\stackrel{ }{\wedge}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{*}$	ω	$\stackrel{\sim}{\square}$	\sim	N	\pm	$\stackrel{\sim}{\square}$	$\stackrel{m}{-}$	N	\times	$\stackrel{ }{\sim}$	\bigcirc	\times	N	の	$\stackrel{\infty}{\sim}$
\pm 0 0	$\begin{aligned} & \text { 毋O } \\ & \text { N} \\ & \text { O} \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\infty} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{\sim}{\mathrm{o}} \end{aligned}$				∞ $\stackrel{\infty}{\circ}$ $\stackrel{N}{N}$ $\stackrel{N}{+}$			\circ $\stackrel{0}{\circ}$ $\stackrel{\circ}{6}$ $\stackrel{\circ}{5}$	$\begin{aligned} & \text { O} \\ & \text { + } \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \stackrel{\rightharpoonup}{\bar{N}} \end{aligned}$	$$			$\begin{aligned} & N \\ & \underset{\infty}{\infty} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\sigma}{7} \end{aligned}$	$\stackrel{0}{0}$ © © ∞	¢ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\sim}$
\cong	$\stackrel{\square}{\bullet}$	－	－	\sim	N	$\stackrel{\sim}{\square}$	\cdots	∞	の	の	F	$\stackrel{ }{\sim}$	\wedge	－	－	∞	∞	$\stackrel{\square}{\square}$
$0 \sum_{x}^{\frac{5}{6}}$	$\frac{6}{z}$	\hat{J}		$\stackrel{N}{\stackrel{N}{2}}$	OUN	$\stackrel{\rightharpoonup}{\overleftarrow{j}}$	$\stackrel{N}{0}$	O	N	$\stackrel{\wedge}{U}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{U}{\mathrm{U}} \\ & \hline \end{aligned}$	O	$\stackrel{\searrow}{J}$	$\begin{aligned} & \bar{\infty} \\ & \sum_{0}^{\infty} \\ & \hline \end{aligned}$	$0 \sum_{x}^{\stackrel{\omega}{c}}$	$\begin{aligned} & \text { M } \\ & \sum_{\substack{\infty}}^{2} \\ & \hline \end{aligned}$	OO	－

AAGA GCTTCAGTG
TCGCTTTTC
CT

24667349

tCAATCAGAAC ACACTAATGAAAGA
AATTAAAGATGC GGCCATTTTATGGA
ATGACAA TCATTCTGACAATG
TTCACAGC AGCAGTCTCACTCA
CGAGCA GCATGAGAGTGGG
AGAGGTT CCAGGTATCCAAAA
CCAGCTT
TGAACTCTGCCTCC
ATTTCC
AAGCAGGGTATGA

วつอเอ৮ฟ

CGAGGGTTGTCATT
ACCTTTGGAGCAG

AAGGAGGTCCACT
TTCACCA
TCTTTCC

GCCAACA AAGAACCTTTTC TCTGCTGGAGAGA
AGTCCA tGGTACCAGAATTA caAgagagccetg CCACCAACACTCAC TTTTGAGACAGCAT
CTTCCTCT
GCCCTTGTTTCCAA
CTAGTCA tTGAGGGCTGAGG TTCTGAT GCAAGG ACTCTCGAGGAAG

 TGAAAGATAACAGG
CCAGGTG 0
0
0
\vdots
0
0
0
0
0

0 CATTTC CAATGAT | を |
| :---: |
| | O

O
岕
0 GCAGTAA
 GAAACTGT

$\stackrel{\circ}{\stackrel{0}{J}}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\circ} \\ & \stackrel{\text { N }}{ } \end{aligned}$	N O O ©			$\stackrel{0}{n}$ $\stackrel{N}{0}$ $\stackrel{\infty}{\infty}$ $\stackrel{\sim}{0}$	N $\stackrel{\circ}{\circ}$ o ／		N O O ＋	\circ $\stackrel{0}{4}$ $\stackrel{y}{4}$ 6	∞ $\stackrel{\circ}{\stackrel{1}{2}}$ $\stackrel{n}{5}$ $\stackrel{0}{6}$	응 $\stackrel{\rightharpoonup}{2}$ $\stackrel{\rightharpoonup}{2}$	$\begin{aligned} & \circ \\ & 0.0 \\ & \text { O్ల } \\ & \text { O} \end{aligned}$			$\begin{aligned} & \hat{0} \\ & \text { 0} \\ & \stackrel{0}{0} \end{aligned}$		－
안	N	$\stackrel{\sim}{\sim}$	$\bar{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	の	F	F	\times	$₹$	$\stackrel{ }{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{ }{\sim}$	$\bar{\sim}$	F	$\stackrel{\infty}{\square}$	$\stackrel{\sim}{\square}$
	$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{\infty} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\underset{\underset{\sim}{N}}{\underset{\sim}{N}}$		∞ $\stackrel{\circ}{\circ}$ $\stackrel{\sim}{\sim}$ $\stackrel{N}{\sim}$		$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\sim}{\sigma} \end{aligned}$	$\frac{N}{N}$		\circ $\stackrel{0}{0}$ 0 	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{N}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{6} \end{aligned}$	® N O O	$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{i n}{6} \\ & \stackrel{6}{6} \\ & \stackrel{m}{c} \end{aligned}$		N N © ® $\stackrel{n}{\circ}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{0}{6} \\ & \stackrel{\circ}{\tau} \end{aligned}$	$\begin{aligned} & \text { 几 } \\ & \text { N} \\ & \text { on } \\ & \dot{\sigma} \end{aligned}$	\％
の	$\stackrel{\infty}{\sim}$	の	F	N	\checkmark	\bullet	\bigcirc	\bullet	N	\ulcorner	\ulcorner	N	m	\checkmark	∞	∞	σ
N్త్ర	N్ᅥ	$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{\sim} \\ & 0 \end{aligned}$	N్త్ర	${\underset{\sim}{\mathrm{N}}}^{\mathbf{N}}$	$\begin{aligned} & \pm \\ & \stackrel{ \pm}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{I} \\ & \bar{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { 厄్ర } \end{aligned}$				$\begin{aligned} & \bar{\beth} \\ & \widetilde{ల ్ ల ్ ర ~} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { N } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \pm \\ & \underset{\sim}{v} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N్ర్ర } \end{aligned}$	$\begin{aligned} & \text { O-1 } \\ & \text { N్ల్ల } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { N్ల్ర } \end{aligned}$	～

$$
\begin{aligned}
& \text { TCATCACCCAAGAG } \\
& \text { CTGTCA } \\
& \text { AAAGGAAATGAGG } \\
& \text { GTAAATCG } \\
& \text { GACCCTCAGCAAA } \\
& \text { CGAAAAG } \\
& \text { GGCAAAGAGGCAA } \\
& \text { TTTCACA } \\
& \text { TGCTGCACTACTGC } \\
& \text { TTGGAA } \\
& \text { TTGTCCCACTTCAG } \\
& \text { CATGAG } \\
& \text { AAGGAATCCCAAG } \\
& \text { ACCCTGT } \\
& \text { TCACTAAGCATGTA } \\
& \text { TGTGGAAA } \\
& \text { TTGTGGAGTCAGC } \\
& \text { AGTTTCCT } \\
& \text { GGCAAGCCTCTCA } \\
& \text { GATTCAA } \\
& \text { AGCTAGGCACTCA } \\
& \text { ACAAAGG } \\
& \text { GAAAGAAACCAGA } \\
& \text { CACAAAAACA } \\
& \text { CAGATACCCGAGG } \\
& \text { GATATATGGT } \\
& \text { GCCTTAGAAAGGG } \\
& \text { GTGGTAA } \\
& \text { CCTGGGTAACACA } \\
& \text { GCGAAA } \\
& \text { TGGGAGAGAAAGG } \\
& \text { AAGGTTTT } \\
& \text { AGGCTGCTTGGAA } \\
& \text { TTACTGC } \\
& \text { TGTAAACATACGGG } \\
& \text { TTCTTTGC } \\
& \text { AGCTTAAGTTGCAT } \\
& \text { TCCACAC } \\
& \text { TTCCCCCTTCCTGTG } \\
& \text { TCCAT } \\
& \text { GCCTGCTTAATACC } \\
& \text { TGTCATTT } \\
& \text { CATTCCAGGCAAC } \\
& \text { CAAAAAC }
\end{aligned}
$$

	$$			$\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$ $\stackrel{\sim}{\sim}$		「	O		$\begin{aligned} & \bar{N} \\ & \stackrel{\sim}{\sigma} \end{aligned}$	N $\stackrel{0}{0}$ 융				$\begin{aligned} & \text { N్ } \\ & \stackrel{N}{N} \\ & \text { 末̀ } \end{aligned}$		N $\stackrel{N}{N}$ $\stackrel{N}{N}$	ồ	\bar{N} $\stackrel{\rightharpoonup}{N}$	N్N O O N	¢	＋

N్ల్ర
๗్ల్ల
๗్ల్ర
স্ত্ত
N్ర్ల్రు
స్ర స్ర స్ ভ్ర
J
J す O 8 O N్ర © O
TCCAGGTAGACGT
GTCAAATAAA
TGACTGGTGTAGA
GAGAAAGAAGG
CCTCTGGGGAAAA
TGTCAAA
CCGGGAAAGTCTTT
GAAGAAA
AAAATGCGCAGACT
GAAAGG
TTGCCAGACTTTCA
GCTCCT
CCTCAGTTTAGATA
AAGCTTGTGC
TCATGAAGGAGGA
GGAAGCA
TGTTAGACGTGAAG
CCTTTCAG
TCTCCAGCTCTCCC
AACAAT
CAACTCTGGAGATC
AGCCTTTT
CTTAACATTTTTAAT
GCAAGCATATT
CCTCAGATGCACG
TTCCA
AAAGTCCGGCGGG
TTTTA
ATGGGTCATCAAAC
AACTACAAAAG
GTTTTCCCAACACA
CGAATG
TGGCTAAGTGGAG
AGAAATGG
TGGTTCAGTTTCCG
TATCTGT
TGTACTGGGATCTA
TTTCTTGATTT
TGACACATTTGCCA
ATAAGACC
CAGTTCTTTTTCCG
GTTGTGA
TGAAAGAGTTTGTA
GCATAATGAGG

131456462
135746039
106011712
42913288
31663176
2993827
1066685144
70560379
17766657
70730016
126348359
29065601
89902939
17791698
71217646
28470635
49441698
59691613
98602169
47747622
84098990
86291396

| 8 | 0 |
| :--- | :--- | :--- |
| | 0 |
| 0 | 0 |

은 응 은 던
స্ত্ত స্ত
덕亏্ত N N N N さ 는 $\stackrel{L}{2}$ స্ত స্ত ड స্ত స্ত

$$
\begin{aligned}
& \text { CAAAATGCATATTT } \\
& \text { TCATGTCTATG } \\
& \text { TCCTTCCTTCTGGC } \\
& \text { AATAGAA } \\
& \text { TGTCCTTCCATGCT } \\
& \text { GACTTT } \\
& \text { CATGTGGCCTTCTG } \\
& \text { AGTGTT } \\
& \text { TGATCTCCCAAATG } \\
& \text { CAGAGT } \\
& \text { AGCTACCACACTCA } \\
& \text { GCCAAGAT } \\
& \text { TACCATGTGCACAA } \\
& \text { GTCTGG } \\
& \text { GGAAAAAGGCTCT } \\
& \text { GAAGTATGC } \\
& \text { AAAAACTGTGAGCA } \\
& \text { CGGCTA } \\
& \text { GAATTCTGCTGTCT } \\
& \text { GGTGTCA } \\
& \text { TTTGTTTTCATCAAT } \\
& \text { AAAATGTGG } \\
& \text { AGAACTTTGAACAA } \\
& \text { ACAGAGATACAG } \\
& \text { TTGGGAAACTAATG } \\
& \text { CAGGAAA } \\
& \text { GGTCTGCCACCTG } \\
& \text { TTATGAA } \\
& \text { GAAGACAAAACCC } \\
& \text { ACGGTTC } \\
& \text { CATATCAGGTGTCA } \\
& \text { GAGGAGGA } \\
& \text { GGAGGTACTTGAG } \\
& \text { TGCACATTG } \\
& \text { CCACTTTCACCACC } \\
& \text { GTTATTC } \\
& \text { CATCCTTGTATACA } \\
& \text { TGCTTTGT } \\
& \text { ACCTGCTCCAGCT } \\
& \text { CCTATCT } \\
& \text { GCCAACACTAGGC } \\
& \text { TAAGCTACA } \\
& \text { CTGCAGACCATAG } \\
& \text { ATCAAGGAG }
\end{aligned}
$$

		$\begin{aligned} & \text { O} \\ & \text { © } \\ & \stackrel{0}{0} \\ & \stackrel{గ}{6} \end{aligned}$	$\begin{aligned} & \bar{N} \\ & \stackrel{\infty}{0} \\ & \stackrel{్}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \stackrel{\sim}{N} \\ & \stackrel{e}{n} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\sim}{N} \\ & \underset{\sim}{0} \end{aligned}$			$\begin{aligned} & \text { on } \\ & \stackrel{0}{0} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{0}{4} \\ & \underset{\sim}{\mathbf{m}} \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \hat{\circ} \\ & \stackrel{\rightharpoonup}{\bar{N}} \\ & \text { Nे} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{5}} \\ & \stackrel{N}{\circ} \\ & \stackrel{5}{6} \end{aligned}$			$\begin{aligned} & \text { N} \\ & \text { § } \\ & \text { on } \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ó } \\ & \stackrel{\circ}{م} \\ & \hline \end{aligned}$	$\begin{aligned} & \check{0} \\ & \stackrel{(}{0} \\ & 0 \\ & \stackrel{\sim}{6} \end{aligned}$	$\begin{gathered} \underset{\sim}{f} \\ \stackrel{N}{\infty} \end{gathered}$
\bigcirc	σ	-	$\stackrel{ }{+}$	-	$\stackrel{ }{\square}$	$\stackrel{\sim}{2}$	$\stackrel{\square}{\sim}$	\times	\bigcirc	F	$\stackrel{\square}{\square}$	\times	N	F		N	$\bar{\sim}$		$\stackrel{\infty}{\sim}$	∞

	\circ 0 0 0 ∞ ∞	$\begin{aligned} & \hat{O} \\ & \stackrel{y}{\ddagger} \end{aligned}$	$\begin{aligned} & \text { ō } \\ & \stackrel{\sim}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { O/ } \\ & \text { O} \end{aligned}$			\mathfrak{O}	$\stackrel{\sim}{N}$	$\begin{aligned} & \text { o} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$				N N N On On	$\begin{gathered} \infty \\ \hline 0.6 \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{0}{n} \\ & \stackrel{0}{n} \\ & \stackrel{\sim}{6} \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{\infty} \\ & 0 \\ & \infty \\ & \infty \end{aligned}$		이	$\check{\circ}$	$\mathscr{\infty}$

더
N్ర్ర స్ত
స్ত
্ָত
N్ల్ర N్ర
N N్ల
N్ర్య
్ָల్ల్ల్ల
N్ల్ల N్ల్ర N్ల్ర్ల్ల్ర N్ల్ల N్ల్ర N్ల్ర O

AGACTTGGATGGA	CCTGTTCTATGTGG	$*$
CAGCACA	ATGTAGTTAGG	$*$
TCAGGAGGAATTG	AGCTGGAATGGGT	
GAGCCTA	GATAAGG	
CATGATCTGAGATG	CAAAAGAGGAGCC	
CCCTGA	GAGGAT	
TGCCTGACTTGTTT	AAGGCCCGGAAGA	$*$
TGTCCA	TCTCA	
TTTTTGAGATGGAG	TGGGCTGAGAAAA	$*$
CCTCACT	GACCAGA	
TCGACCTACTGCAT	TGACAAAGGGCTA	$*$
GTCCTTT	ATATCCAGA	
TGCCTTCTTGCCTC	AATGAAGGGGTCA	
TTGTCT	TTGATGG	

ำ $ก$ ก ก ก ก
121544042
65244593
68622656
96602253
69050618
43129443
6645634 $\infty F F F F M$ N
*, modified by using 1% Tween 20.

[^4]Table 6. Primer information for quantitative PCR.

No	$\begin{aligned} & \text { Primer } \\ & \text { ID } \end{aligned}$	Primer sequences*	Annealing temperature $\left({ }^{\circ} \mathrm{C}\right)$	PCR product
1	GC S4-7	F: 5'-ATGAGGCACTCCAAGCAAAG-3'	55	107bp
		R: 5^{\prime}-TGGGAGAGAAAGGAAGGTTTT-3'		
		Probe: 5'-CAGCAGCAAGAATGCAAAAA-3'		
2	GC S8-4	F: 5'-AGCGTTCCATCACAGAATGA-3'	55	130bp
		R: 5^{\prime}-CATTCCAGGCAACCAAAAAC-3'		
		Probe: 5'-ACCGCCTTTGCAAAATTATG-3'		
3	GC S9-5	F: 5^{\prime}-TCCAGGTAGACGTGTCAAATAAA-3'	55	120bp
		R: 5 '-TCCAGGTAGACGTGTCAAATAAA-3'		
		Probe: 5^{\prime} 'TGAAGTTCAAAACTAAGGTAAATTTGG-3'		
4	GC S12-2	F: 5'- CCCAAGTAGCTGGGAAAACA -3'	55	126bp
		R: 5^{\prime} - CCTCAGATGCACGTTCCA -3'		
		Probe: 5^{\prime}-ACGACACCCGGCTAATTTTT-3'		
5	GC S14-4	F: 5'- TCTAAGTAGTTTTTACCCATCCAAA -3'	52	106bp
		R: 5^{\prime} - ATGGGTCATCAAACAACTACAAAAG -3'		
		Probe: 5'-TTGCCCAAGATCAGGATTTG-3'		
6	$\begin{gathered} \text { GC } \\ \text { SKN15-2 } \end{gathered}$	F: 5^{\prime} - TGGCTAAGTGGAGAGAAATGG -3'	55	121 bp
		R: 5^{\prime} - TGGCTAAGTGGAGAGAAATGG -3,		
		Probe: 5^{\prime}-TGAGGTTTTGATATTTCACGTGA-3'		
7	GC S17-1	F: 5'- TGGTTCAGTTTCCGTATCTGT -3'	55	110bp
		R: 5^{\prime} - GAAGTGGGTTCTTCTAATCAAGC - ${ }^{\prime}$ '		
		Probe: 5^{\prime}-GATCTGAATTGTGTCATTCATTCA-3'		
8	$\begin{gathered} \text { GC } \\ \text { SKN18-2 } \end{gathered}$	F: 5'- GGTCTCTTTGTATATGACCTTCTCC -3'	55	130bp
		R: 5^{\prime} - TCCTTCCTTCTGGCAATAGAA - ${ }^{\prime}$		
		Probe: 5^{\prime}-TGGAGGTGGAGTTGTGTTCA-3'		
9	GC S22-3	F: 5'- GGGTGGAGTTGGAACGTTAG -3'	55	115 bp
		R: 5^{\prime} - AAAAACTGTGAGCACGGCTA -3'		
		Probe: 5'-GGCTAGGTGAGGAGTGTTGG-3'		
10	GC31 S5	F: 5^{\prime} - GCCAGTAATTGGGTATATTTTGG -3'	55	127bp
		R: 5'- TTGGGAAACTAATGCAGGAAA -3'		
		Probe: 5^{\prime}-TTCACTAAGCATGTATGTGGAAA-3'		
11	GC32 S2	F: 5'- TGGTGGCATACACCTATTGC -3'	55	126bp
		R: 5^{\prime} - GAAGACAAAACCCACGGTTC -3,		
		Probe: 5'-GTGAGAGGATTGCTTGAGCC-3'		
12	GC33 S3	F: 5'- TCAGGAGGAATTGGAGCCTA -3'	55	124bp
		R: 5^{\prime} - AGCTGGAATGGGTGATAAGG -3'		
		Probe: 5'-AGAGGATGAAGGGCGAGAAG-3'		
13	GC34 S2	F: 5'- TCGACCTACTGCATGTCCTTT -3'	55	104bp
		R: 5^{\prime} - TGACAAAGGGCTAATATCCAGA -3'		
		Probe: 5^{\prime}-TCATCAATGAAAATGGGGGT-3'		
	GAPDH	F: 5'-TGCCTTCTTGCCTCTTGTCT-3'	55	110bp

[^5]
4. Results

4.1 LCM and purification of DNA

Among 178 cases whose serial plasma samples up to 12 months after curative surgical resection were available (stage II, $\mathrm{N}=69$; stage III, $\mathrm{N}=84$; stage IV, $\mathrm{N}=24$; GIST, $\mathrm{N}=1$), all 21 recurrent cases (stage II, $\mathrm{N}=2$; stage III, $\mathrm{N}=16$; stage IV, $\mathrm{N}=2$; GIST, $\mathrm{N}=1$) and 4 non-recurrent cases (stage II, N=2; stage III, N=2) for which fresh-frozen paired tumor and normal samples were available from the Tissue Bank of the National Cancer Center were selected (Figure 6). Peritoneal seeding was diagnosed in two stage IV cases after surgical removal of the primary tumor. All of the patients' clinical information is described in Table 1. LCM was performed on the fresh-frozen primary tumors for enrichment of cancer cells (Figure 6), and the estimated cancer cell percentages after LCM were above 70\%.

Figure 6. Fresh-frozen primary tumors, stained with haematoxylin and eosin. A. Cancer cells in primary tumor tissues before LCM. Cancer cell nests, marked in green lines. B. Remnant normal cells and inflammatory cells after LCM.

4.2 Identification of tumor-specific rearrangement sequences

To identify personalized rearrangements that could serve as biomarkers, WGS was performed on DNAs isolated from 25 paired primary gastric cancer and normal gastric tissues. On average, 796 million DNA fragments were sequenced per tumor (range: 683-933 million), yielding a mean genome sequence coverage of 41.7-fold (range: 35.8-48.9) (Table 3). After analysis of the WGS data, rearranged sequences specific to the tumor samples were identified (Figure7, Table 4). In 6 cases, no personalized cancer-specific rearrangement was identified in the WGS data, and no further analysis was performed.

4.3 Confirmation of selected cancer-specific rearrangement

sequences

PCR primers were designed for 141 sites from 19 cases in which cancer-specific rearrangement was identified in the WGS data (Table 5). Out of 141 primer pairs, cancer-specific amplification was observed at 84 sites (Table 1). With Sanger sequencing, personalized cancer-specific rearranged sequences were confirmed at 66 sites (Figure7C, Table 1). With the Sanger sequencing data, specific primers were designed again for short-length PCR products. With the designed short primer pairs, rearranged sequences were confirmed finally by cancer-specific PCR and Sanger Sequencing at 63 rearranged sites (Table 5, Figure 8,9), and these personalized cancer-specific short primers were used for monitoring of ctDNA in plasma samples (Kang et al. 2015)

4.4 Monitoring for presence of ctDNA in serial plasma samples

Circulating cell-free DNA was isolated from 83 plasma samples from 19 patients. Each personalized cancer-specific PCR was performed along with positive (tumor DNA) and negative (paired normal DNA) controls (Figure8). To confirm the rearranged sequences, the amplified products were sequenced by the Sanger sequencing method (Figure 9).

In pre-operative plasma, ctDNA was positive in 11 cases, and the positivity rate of pre-operative ctDNA in advanced gastric cancer patients was $58 \%(11 / 19)$ ($P=0.0587$ by Fisher's exact test, Table 1). In the analysis of pre-operative ctDNA positivity and the clinical T stages (tumor size) of the gastric cancer patients, there was no significant correlation $(P=0.3189)$, though the case number was quite low. None of the other clinical factors, including N stage, clinical stage, and Lauren classification, was significantly correlated with pre-operative ctDNA positivity either. ctDNA was detected in post-operative plasma samples from 8 cases, and the median lead time from ctDNA positivity to clinical recurrence after ctDNA detection was 4.05 months (Table 1). Two clinical stage IV cases in each of which positive peritoneal seeding was found after surgical resection showed positive ctDNA in the post-operative plasma. In seven cases, no ctDNA was detected in pre- or post-operative plasma samples, even with 3-5 different markers (Figure 10).

Figure 8. Monitoring of ctDNA in serially collected plasma samples. Confirmation of rearrangement sites by using PCR. Rearranged sequences (S22-2, S22-3, and S22-4) are amplified in pre-operative (PreOP) and serial post-operative plasma samples collected at 1-9 months $(1 \mathrm{M}-9 \mathrm{M})$ after surgery, along with normal (N) and tumor (T) tissue samples. Mr, molecular size markers.

Figure 9. Confirmation of rearrangements by Sanger sequencing for 3 rearrangements.

Amplified products were sequenced by Sanger sequencing method. Rearranged sequences (S22-2 (A), S22-3 (B), and S22-4 (C)) of GC22 are confirmed.

Sample ID	PCR		ctDNA						$\begin{gathered} \text { RFS } \\ \text { (month) } \end{gathered}$
	Tumor	Normal	PreOP	1M	3M	6M	9M	12M	
GC17	+	-	$+$	$+$	ND	$+$	$+$	$+$	metastatic
	+	-	+	+		+	+	+	
	$+$	-	$+$	$+$		$+$	+	+	
	$+$	-	$+$	$+$		$+$	+	+	
	+	-	+	+		+	+	+	
GC22	+	-	+	+	$+$	+	+	ND	metastatic
	+	-	$+$	$+$	+	$+$	+		
	$+$	-	+	$+$	+	$+$	$+$		
GC4	$+$	-	+	$+$	+	$+$	+	$+$	10.3
	+	-	+	+	$+$	+	-	+	
	+	-	+	+	+	-	+	+	
GC8	+	-	+	-	-	-	-	-	1.4
	+	-	+	-	+	-	-	-	
GC9	+	-	+	-	-	-	-	-	5.9
	$+$	-	+	-	-	-	-	-	
	+	-	+	+	-	-	-	-	
GC10	$+$	-	-	-	-	-	-	-	5.6
	+	-	-	-	-	-	-	-	
	$+$	-	-	-	-	-	-	-	
GC11	+	-	+	+	+	$+$	ND	ND	6.7
	$+$	-	+	-	-	+			
	+	-	$+$	$+$	$+$	$+$			
	+	-	-	-	+	+			
GC14	+	-	-	-	-	-	-	-	6
	$+$	-	-	-	-	$+$	$+$	-	
GC15	$+$	-	$+$	+	+	+	+	+	4
	$+$	-	+	-	+	+	-	-	
GC21	+	-	-	-	-	-	-	-	5.6
	$+$	-	-	-	-	-	-	-	
	$+$	-	-	-	-	-	-	-	
	+	-	-	-	-	-	-	-	
	$+$	-	-	-	-	-	-	-	
GC1	$+$	-	-	-	-	-	-	-	31.2
	$+$	-	-	-	-	-	-	-	
	$+$	-	-	-	-	-	-	-	
	$+$	-	-	-	-	-	-	-	
GC6						ND	ND	ND	16.8
	+	-	-	-	-				
	$+$	-	-	-	-				
GC7	$+$	-	-	-	-	-	-	-	13.1
GC12	+	-	-	-	-	-	-	-	15.2
	$+$	-	-	-	-	-	-	-	
GC18	+	-	-	-	-	-	-	-	30.4
	+	-	-	-	-	-	-	-	
GC32	$+$	-	$+$	-	-	-	-	-	18.2
	$+$	-	+	-	-	-	-	-	
	$+$	-	$+$	-	-	-	-	-	
	$+$	-	$+$	-	-	-	-	-	
	$+$	-	+	-	-	-	-	-	
	$+$	-	$+$	-	-	-	-	-	
	+	-	$+$	-	-	-	-	-	
	+	-	$+$	-	-	-	-	-	
GC31	+	-	+	-	-	-	-	-	non-recur
	$+$	-	$+$	-	-	-	-	-	
GC33	$+$	-	+	-	-	-	-	-	non-recur
	$+$	-	$+$	-	-	-	-	-	
	$+$	-	+	-	-	-	-	-	
	$+$	-	$+$	-	-	-	-	-	
	$+$	-	$+$	-	-	-	-	-	
	$+$	-	+	-	-	-	-	-	
GC34	$+$	-	$+$	-	-	-	-	-	non-recur

Figure 10. ctDNA positivity in 19 gastric cancer patients. Each line for a case indicates each personalized cancer-specific rearranged marker: + , positive ctDNA; -, negative ctDNA; RFS, relapse-free survival in months; ND, not determined

4.5 Correlation between post-operative ctDNA and clinical

recurrence

In the analysis of the correlation between post-operative ctDNA positivity and clinical recurrence, the presence of post-operative ctDNA at any time within 12 months of surgical resection was significantly correlated with cancer recurrence within 12 months of surgical resection ($P=0.0023$, Figure. 11B), in contrast to the finding of no significance for pre-operative ctDNA positivity ($P=$ 0.6372 , Figure 11A). For this analysis, ctDNA was considered as positive when any cancer-specific rearranged sequence was detected in any plasma sample. However, this correlation might not be properly indicative of the usefulness of ctDNA monitoring, because ctDNA-positive cases detected later than clinical recurrence also were included in the positive correlation. To remove this error, ctDNA-positive cases detected only prior to clinical recurrence were analyzed as post-operative ctDNA-positive cases, and the results once again indicated a significant correlation between ctDNA positivity prior to clinical recurrence and cancer recurrence within 12 months of curative surgical resection ($P=0.0294$, Figure 11C), suggesting that ctDNA positivity can be an indicator of imminent clinical recurrence.

A statistical analysis on the correlation between adjuvant chemotherapy (Table 2) and post-operative ctDNA negativity was not significant, due to the limited case number. However, all three non-recurrent pre-operative ctDNA-positive cases with adjuvant chemotherapy were negative for
post-operative ctDNA, in contrast to all two pre-operative ctDNA-positive cases without adjuvant chemotherapy, which were positive for post-operative ctDNA.

Figure 11. Correlation of ctDNA positivity with recurrent event within post-operative 12 months.
A. Correlation of pre-operative ctDNA positivity with recurrent event. B. Correlation of post-operative ctDNA positivity with recurrent event. C. Correlation of post-operative ctDNA positivity prior to clinical recurrence with recurrent cancer.

4.6 Quantitative measurement of ctDNA in plasma

For quantitative measurement of ctDNA in plasma, quantitative PCR was performed for 13 cases. Amplification was confirmed in 96.1\% (74/77) of plasma samples in which the presence of ctDNA was tested by PCR and Sanger sequencing (Figure 12, Table 7). Detection of ctDNA can help to predict clinical recurrence, as shown in Figure 12A; however, the cases shown in Figures 12B12C would not be helpful, because the detection time is similar to or later than the date of clinical recurrence. In one case (Figure 12D), ctDNA was detected 1 month after surgery but not later than clinical recurrence. In order to check if there are more ctDNA-positive cases, quantitative PCR was performed in pre-operative bloods from 5 ctDNA-negative cases by the employment of sample amounts equivalent to $333 \mu \mathrm{~L}$ (for GC 12 and GC18) or $833 \mu \mathrm{~L}$ (for $\mathrm{GC} 1, \mathrm{GC} 6$, GC10, and GC12) of plasma, but all were negative (Table 8).

In our quantitative results, the ctDNA level in most of the pre- and post-operative plasma samples was at the lower limit for quantitative PCR detection (mean Ct value: 37.8), which limits the quantitative value of the ctDNA . The difference in the ctDNA level between the pre-operative and post-operative plasma was not large ($2-4$ cycles) relative to the difference expected in light of the dramatic tumor size reduction after curative surgical treatment.

We performed droplet digital PCR (ddPCR) for two markers in the GC4 case, employing $10 \mu \mathrm{~L}$ cfDNA (equivalent to $333 \mu \mathrm{~L}$ plasma) to ensure the positive identification of ctDNA in post-operative plasma. In all of the post-operative
plasma samples for the two markers by ddPCR, ctDNA was positive, which is quite correspondent to our results by quantitative PCR with employment of the same amount ($10 \mu \mathrm{~L}$) of cfDNA (Tables 7, and 9).

Figure 12. Quantitative measurement of ctDNA levels in serial plasma samples from gastric cancer patients.
ctDNA levels in bloods from cancer patients GC4 (A), GC14 (B), GC8 (C), and GC9 (D). GAPDH, amplification control. X-axis, DNAs from normal (N) and cancer (T) tissues, and from pre-operative (PreOP) and post-operative (PostOp) plasma samples at $1,3,6,9$, and 12 months after surgery. Y-axis, delta Ct (the difference of Ct values between the marker and $G A P D H$). The arrows indicate the time of clinical recurrence after surgery. ND, non-detectable.

Table 7. Estimation of relative level of ctDNA by quantitative PCR.

Sample ID	Tissue (Ct)		ctDNA (Ct)					
	Normal	Tumor	PreOP	PostOP				
				1M	3M	6M	9M	12M
GC4	-	27.91	35.25	36.15	36.65	36.18	37.96	36.95
GC8	-	28.22	38.62	-	37.56	-	-	-
GC9	-	37.11	38.94	40.98	-	-	-	-
GC12	-	26.16	-	-	-	-	-	-
GC14	-	32.54	39.44	-	-	39.35	N.M	-
GC15	-	30.90	37.57	-	N.M	N.M	-	-
GC17	-	32.02	38.94	39.71	N.D	40.05	35.88	38.58
GC18	-	26.00	-	-	-	-	-	-
GC22	-	26.87	37.89	37.70	37.59	38.25	37.87	N.D
GC31	-	26.46	35.25	-	-	-	-	-
GC32	-	25.56	36.06	-	-	-	-	-
GC33	-	28.39	37.17	-	-	-	-	-
GC34	-	30.73	40.28	-	-	-	-	-

Ct, threshold cycles; -, not detected; N.M, not matched; N.D, not determined.

Table 8. Estimation of the level of pre-operative ctDNA by quantitative PCR in 5 pre-operative ctDNA-negative cases.

Sample ID	GAPDH (Ct)			Target (Ct)		
	Normal sample	Cancer Tissue	$\begin{gathered} \hline \text { Pre-operative } \\ \text { plasma } \\ \text { (sample } \\ \text { amount } \mu \mathrm{L}^{*} \text {) } \\ \hline \end{gathered}$	Normal sample	Cancer Tissue	Pre-operative plasma (sample amount $\mu \mathrm{L}$ *)
GC1	27.52	23.6	27.66 (167)	-	28.64	-833
GC6	25.65	24.12	27.42 (167)	-	26.7	-833
GC10	28.22	24.62	29.72 (167)	-	27.67	-833
GC12	26.86	25.18	30.45 (167)	-	26.85	-833
GC18	24.12	23.71	27.13 (333)	-	26	-333

* Sample amount of equivalent plasma employed for quantitative PCR

Ct , threshold cycles; -, not detected.

Table 9. Quantitative measurement of ctDNA by digital droplet PCR

	Tissue		ctDNA					
Marker				PostOP				
	Normal	Tumor	PreOP	1 M	3 M	6 M	9 M	12 M
GC4 S4-6	0	301	28	16	17	13	3	26
GC4 S4-7	0	354	19	15	10	5	9	11

The number of positive droplets is shown.
PreOP, pre-operative; PostOP, post-operative samples; 1M, 3M, 6M, 9M, and 12
M , plasma samples at $1,3,6,9$, and 12 months after surgery, respectively.

5. Discussion

In the analysis of ctDNA levels in post-operative blood employing personalized cancer-specific rearrangements instead of mutations, we confirmed the presence of ctDNA at a median lead time of 4.05 months, and found that post-operative ctDNA positivity prior to clinical recurrence was significantly correlated with cancer recurrence within 12 months of radical surgery ($P=$ 0.029). As such, our study can be considered to have confirmed the clinical usefulness of ctDNA monitoring for cancer recurrence in gastric cancer patients after curative surgical resection.

Although ctDNA has been detected in blood samples obtained from cancer patients, its usefulness for the detection of early recurrence after curative surgical resection has been in question, due to the possibility of low level of ctDNA shedding from microscopically remnant or recurrent cancer cells when the general correlation between the tumor burden and the ctDNA level is considered (Muhanna et al. 2017). Two studies on blood ctDNA for monitoring of recurrence in breast cancer (Garcia-Murillas et al. 2015) and colon cancer (Tie et al. 2016) suggested the possibility of the clinical application of mutation monitoring. The employment of mutations for serial ctDNA monitoring, however, can suffer from a high rate of inconsistency due to false positivity or negativity, or technical NGS problems in the detection of mutations, especially for low-allele-frequency mutants (Hudson et al. 2014). The proportion of ctDNA in blood is extremely low, and so NGS methods must be effective in detecting mutant allelic frequencies as
low as 0.1% (Crowley et al. 2013), which fact might lead to inconsistency in ctDNA detection by NGS. A comparative study of mutations in primary tumors and ctDNA from the blood of advanced lung cancer patients also indicated that there would be inconsistency when mutation calls obtained from NGS are employed for monitoring of ctDNA: the concordance rate was only 50.4%, even in the blood from cancer patients who had not undergone surgical removal of primary tumors (Chen, Lou, et al. 2016). In order to alleviate the problem of inconsistency in NGS, personalized cancer-specific rearrangements have been employed for detection of ovarian cancer recurrence (Harris et al. 2016), the resultant data confirming the presence of ctDNA in post-operative blood; however, the clinical usefulness of ctDNA was not analyzed in that study. The present study, having employed cancer-specific rearrangements to increase specificity and sensitivity for detection of ctDNA in serially collected post-operative bloods, established the clinical usefulness of ctDNA monitoring for cancer recurrence: the presence of ctDNA was confirmed at a median lead time of about 4 months, which demonstrated the significant association between ctDNA presence in blood prior to clinical recurrence and cancer recurrence within 12 months of curative surgical resection. Therefore, our study can be considered to advocate for the utility of ctDNA monitoring for cancer recurrence after curative surgical resection.

Although previous studies have shown that ctDNA can be an excellent screening method for cancer recurrence, significant fractions of their recurrent cancer patients showed ctDNA negativity in their post-operative blood
(Garcia-Murillas et al. 2015, Bettegowda et al. 2014). The main suggested factors behind those results were tumor heterogeneity and the relative paucity of remnant cancer cells after curative resection. Inconsistent post-operative ctDNA positivity for each rearranged sequence in some cases in the present study might indicate the possible heterogeneity in cancer cells, which would necessitate the employment of several rearranged markers for a case to increase the post-operative ctDNA positivity. In addition, ctDNA non-shedders, who do not have detectable ctDNA in pre-operative blood, may be one of the main reasons for the ctDNA-negativity in recurrent post-operative blood because a lot of cases in the present study showed no ctDNA in pre-operative blood though all recruited patients were at the T3 or T4 stage. Moreover, most of the pre-operative ctDNA-negative cases (7/8) and recurrent ctDNA non-shedders (4/5) remained ctDNA-negative in post-operative blood. Consistent with this, pre-operative ctDNA-negative cases and ctDNA non-shedders have already been reported (Cohen et al. 2018). Therefore, ctDNA-non-shedders might be an important reason for ctDNA negativity in recurrent cases. Inclusion of only pre-operative ctDNA-positive cases or ctDNA shedders for ctDNA monitoring might, accordingly, improve cost-effectiveness for early detection of cancer recurrence after curative surgical treatment.

In the present study on serial monitoring of ctDNA in post-operative blood, several issues arose. First, ctDNA in serial post-operative blood was not consistently positive during the follow-up periods. For example, in one case, ctDNA was positive at 1 month following surgical resection, but became negative
until clinical recurrence, which suggests that ctDNA levels during follow-up periods might continually change with ctDNA dynamics. Therefore, the meaning of ctDNA-positivity in the short term, as it relates to cancer recurrence risk, might be difficult to determine. At the very least, more frequent monitoring of ctDNA could increase the chances of correctly identifying recurrent cases, or could help to determine the risk for cancer recurrence. The second issue that arose in this study with respect to serial monitoring of ctDNA in post-operative blood was the fact that the level of post-operative ctDNA was not much different from its pre-operative level, although a large decrease in tumor burden after curative surgical removal of primary cancer was expected. Previous studies employing mutations for ctDNA monitoring also have reported cases showing small changes in ctDNA levels between pre- and post-operative blood (Garcia-Murillas et al. 2015, Hamakawa et al. 2015), suggesting that factors other than tumor size might also be important for determination of ctDNA levels. Although ctDNA levels have been reported to be correlated with tumor size (Crowley et al. 2013), there were no significant correlations in the present study between pre- or post- operative ctDNA positivity and T stage (tumor size), which supports the supposition that inherent biological or dynamic tumor factors determine ctDNA levels. Therefore, issues such as the presence of ctDNA in short-term follow-up and ctDNA dynamics independent of tumor size could be considered to interfere with accurate prediction of cancer recurrence by ctDNA monitoring.

In the present study, personalized cancer-specific rearrangements were
employed for monitoring of ctDNA in post-operative blood samples obtained from cancer patients. We expected that monitoring of rearrangements in post-operative blood would be sensitive, simple, and rapid for more frequent monitoring of ctDNA. Although the sensitivity employing mutations have been dramatically increased (Lee et al. 2016, Park, Park, et al. 2018, Kinde et al. 2011), but the serial monitoring of mutations from post-operative blood by NGS or droplet digital PCR would take more time and cost than simple PCR. However, the burden of time and cost in obtaining information on cancer-specific rearrangements by WGS is high. Especially, high proportions of rearrangements detected in WGS analysis are negative in PCR confirmation or PCR sequencing. In the present study furthermore, WGS failed to find any cancer-specific rearrangements in 6 out of 25 cases, adding to the difficulty of employing rearrangements for ctDNA monitoring. Therefore, for employment of personalized cancer-specific rearrangements in monitoring of ctDNA, more timeand cost-effective screening methods are necessary.

The present study has several limitations. It was performed retrospectively, plasma samples having been collected until 12 months after curative surgical resection, and the available recurrence cases were enrolled preferentially, both of which conditions can incur bias. A prospective study with more extensive serial collection of plasma samples until cancer recurrence would yield more objective information on ctDNA monitoring for cancer recurrence. Additionally, the present study employed only limited amounts of plasma, about 1 ml in most cases, and only about 67 ul of plasma per PCR reaction for monitoring of ctDNA,
because several markers had to be checked at the same time. Employment of larger volumes of plasma for ctDNA monitoring would increase sensitivity.

In conclusion, we demonstrated the usefulness of ctDNA monitoring employing personalized cancer-specific rearranged sequences for detection of gastric cancer recurrence, having confirmed the presence of ctDNA, at a median lead time of 4.05 months, and its significant correlation with clinical recurrence. Our results also raise important issues that could limit the usefulness of ctDNA monitoring: 1) ctDNA non-shedders without any detectable pre-operative ctDNA, most of which remain as ctDNA non-shedders even after cancer recurrence; and 2) inconsistent post-operative ctDNA positivity in ctDNA shedders. In consideration of our overall results, ctDNA monitoring for cancer recurrence certainly warrants future prospective studies on its clinical utility, but the limitations due to ctDNA dynamics during pre- and post-operative periods should be considered for designing prospective studies.

BIBLIOGRAPHY

Bai, Y., and H. Zhao. 2018. "Liquid biopsy in tumors: opportunities and challenges." Ann Transl Med 6 (Suppl 1):S89. doi: 10.21037/atm.2018.11.31.

Basho, Reva Kakkar. 2015. "Clinical Applications and Limitations of Next-Generation Sequencing." THE AMERICAN JOURNAL OF HEMATOLOGY/ONCOLOGY 11 (3):17-22.
Bettegowda, C., M. Sausen, R. J. Leary, I. Kinde, Y. Wang, N. Agrawal, B. R. Bartlett, H. Wang, B. Luber, R. M. Alani, E. S. Antonarakis, N. S. Azad, A. Bardelli, H. Brem, J. L. Cameron, C. C. Lee, L. A. Fecher, G. L. Gallia, P. Gibbs, D. Le, R. L. Giuntoli, M. Goggins, M. D. Hogarty, M. Holdhoff, S. M. Hong, Y. Jiao, H. H. Juhl, J. J. Kim, G. Siravegna, D. A. Laheru, C. Lauricella, M. Lim, E. J. Lipson, S. K. Marie, G. J. Netto, K. S. Oliner, A. Olivi, L. Olsson, G. J. Riggins, A. Sartore-Bianchi, K. Schmidt, M. Shih 1, S. M. Oba-Shinjo, S. Siena, D. Theodorescu, J. Tie, T. T. Harkins, S. Veronese, T. L. Wang, J. D. Weingart, C. L. Wolfgang, L. D. Wood, D. Xing, R. H. Hruban, J. Wu, P. J. Allen, C. M. Schmidt, M. A. Choti, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, N. Papadopoulos, and L. A. Diaz, Jr. 2014. "Detection of circulating tumor DNA in earlyand late-stage human malignancies." Sci Transl Med 6 (224):224ra24. doi: 10.1126/scitranslmed. 3007094.
Chen, K. Z., F. Lou, F. Yang, J. B. Zhang, H. Ye, W. Chen, T. Guan, M. Y. Zhao, X. X. Su, R. Shi, L. Jones, X. F. Huang, S. Y. Chen, and J. Wang. 2016. "Circulating Tumor DNA Detection in Early-Stage Non-Small Cell Lung Cancer Patients by Targeted Sequencing." Sci Rep 6:31985. doi: 10.1038/srep31985.

Chen, X., O. Schulz-Trieglaff, R. Shaw, B. Barnes, F. Schlesinger, M. Kallberg, A. J. Cox, S. Kruglyak, and C. T. Saunders. 2016. "Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications." Bioinformatics 32 (8):1220-2. doi: 10.1093/bioinformatics/btv710.

Choi, H. J., S. M. Kim, J. Y. An, M. G. Choi, J. H. Lee, T. S. Sohn, J. M. Bae, and S. Kim. 2016. "Risk Factors and Tumor Recurrence in pT1N0M0 Gastric Cancer after Surgical Treatment." J Gastric Cancer 16 (4):215-220. doi: 10.5230/jgc.2016.16.4.215.

Clair, G., P. D. Piehowski, T. Nicola, J. A. Kitzmiller, E. L. Huang, E. M. Zink, R. L. Sontag, D. J. Orton, R. J. Moore, J. P. Carson, R. D. Smith, J. A. Whitsett, R. A. Corley, N. Ambalavanan, and C. Ansong. 2016. "Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples." Sci Rep 6:39223. doi: 10.1038/srep39223.
Cohen, J. D., L. Li, Y. Wang, C. Thoburn, B. Afsari, L. Danilova, C. Douville, A. A. Javed, F. Wong, A. Mattox, R. H. Hruban, C. L. Wolfgang, M. G.

Goggins, M. Dal Molin, T. L. Wang, R. Roden, A. P. Klein, J. Ptak, L. Dobbyn, J. Schaefer, N. Silliman, M. Popoli, J. T. Vogelstein, J. D. Browne, R. E. Schoen, R. E. Brand, J. Tie, P. Gibbs, H. L. Wong, A. S. Mansfield, J. Jen, S. M. Hanash, M. Falconi, P. J. Allen, S. Zhou, C. Bettegowda, L. A. Diaz, Jr., C. Tomasetti, K. W. Kinzler, B. Vogelstein, A. M. Lennon, and N. Papadopoulos. 2018. "Detection and localization of surgically resectable cancers with a multi-analyte blood test." Science 359 (6378):926-930. doi: 10.1126/science.aar3247.
Crowley, E., F. Di Nicolantonio, F. Loupakis, and A. Bardelli. 2013. "Liquid biopsy: monitoring cancer-genetics in the blood." Nat Rev Clin Oncol 10 (8):472-84. doi: $10.1038 /$ nrclinonc.2013.110.
Dawson, S. J., N. Rosenfeld, and C. Caldas. 2013. "Circulating tumor DNA to monitor metastatic breast cancer." N Engl J Med 369 (1):93-4. doi: 10.1056/NEJMc1306040.

De Marchi, T., R. B. Braakman, C. Stingl, M. M. van Duijn, M. Smid, J. A. Foekens, T. M. Luider, J. W. Martens, and A. Umar. 2016. "The advantage of laser-capture microdissection over whole tissue analysis in proteomic profiling studies." Proteomics 16 (10):1474-85. doi: 10.1002/pmic. 201600004.

Dhanasekaran, S., T. M. Doherty, J. Kenneth, and T. B. Trials Study Group. 2010. "Comparison of different standards for real-time PCR-based absolute quantification." J Immunol Methods 354 (1-2):34-9. doi: 10.1016/j.jim.2010.01.004.

Diehl, F., K. Schmidt, M. A. Choti, K. Romans, S. Goodman, M. Li, K. Thornton, N. Agrawal, L. Sokoll, S. A. Szabo, K. W. Kinzler, B. Vogelstein, and L. A. Diaz, Jr. 2008. "Circulating mutant DNA to assess tumor dynamics." Nat Med 14 (9):985-90. doi: 10.1038/nm. 1789.
Espy, M. J., J. R. Uhl, L. M. Sloan, S. P. Buckwalter, M. F. Jones, E. A. Vetter, J. D. Yao, N. L. Wengenack, J. E. Rosenblatt, F. R. Cockerill, 3rd, and T. F. Smith. 2006. "Real-time PCR in clinical microbiology: applications for routine laboratory testing." Clin Microbiol Rev 19 (1):165-256. doi: 10.1128/CMR.19.1.165-256.2006.

Garcia-Murillas, I., G. Schiavon, B. Weigelt, C. Ng, S. Hrebien, R. J. Cutts, M. Cheang, P. Osin, A. Nerurkar, I. Kozarewa, J. A. Garrido, M. Dowsett, J. S. Reis-Filho, I. E. Smith, and N. C. Turner. 2015. "Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer." Sci Transl Med 7 (302):302ra133. doi: 10.1126/scitranslmed.aab0021.
Hahn, Andrew W., Roberto H. Nussenzveig, Benjamin L. Maughan, and Neeraj Agarwal. 2019. "Cell-free Circulating Tumor DNA (ctDNA) in Metastatic Renal Cell Carcinoma (mRCC): Current Knowledge and Potential Uses." Kidney Cancer 3 (1):7-13. doi: 10.3233/kca-180048.
Hallinan, J. T., and S. K. Venkatesh. 2013. "Gastric carcinoma: imaging diagnosis, staging and assessment of treatment response." Cancer Imaging 13:212-27. doi: 10.1102/1470-7330.2013.0023.
Hamakawa, T., Y. Kukita, Y. Kurokawa, Y. Miyazaki, T. Takahashi, M. Yamasaki,
H. Miyata, K. Nakajima, K. Taniguchi, S. Takiguchi, M. Mori, Y. Doki, and K. Kato. 2015. "Monitoring gastric cancer progression with circulating tumour DNA." $B r \quad J$ Cancer 112 (2):352-6. doi: 10.1038/bjc.2014.609.

Hamashima, C., K. Ogoshi, M. Okamoto, M. Shabana, T. Kishimoto, and A. Fukao. 2013. "A community-based, case-control study evaluating mortality reduction from gastric cancer by endoscopic screening in Japan." PLoS One 8 (11):e79088. doi: 10.1371/journal.pone. 0079088.
Harris, F. R., I. V. Kovtun, J. Smadbeck, F. Multinu, A. Jatoi, F. Kosari, K. R. Kalli, S. J. Murphy, G. C. Halling, S. H. Johnson, M. C. Liu, A. Mariani, and G. Vasmatzis. 2016. "Quantification of Somatic Chromosomal Rearrangements in Circulating Cell-Free DNA from Ovarian Cancers." Sci Rep 6:29831. doi: 10.1038/srep29831.
Horak, P., S. Frohling, and H. Glimm. 2016. "Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls." ESMO Open 1 (5):e000094. doi: 10.1136/esmoopen-2016-000094.
Hudson, A. M., T. Yates, Y. Li, E. W. Trotter, S. Fawdar, P. Chapman, P. Lorigan, A. Biankin, C. J. Miller, and J. Brognard. 2014. "Discrepancies in cancer genomic sequencing highlight opportunities for driver mutation discovery." Cancer Res 74 (22):6390-6396. doi: 10.1158/0008-5472.CAN-14-1020.

Jie FU, Ding LI, Shaoyou XIA, Haifeng SONG, and Zhongming TANG. 2009. "Absolute Quantification of Plasmid DNA by Real-time PCR with Genomic DNA as External Standard and Its Application to a Biodistribution Study of an HIV DNA Vaccine." The Japan Society for Analytical Chemistry 25:675-680.
Jung, J. J., J. H. Cho, S. Shin, and Y. M. Shim. 2014. "Surgical treatment of anastomotic recurrence after gastrectomy for gastric cancer." Korean J Thorac Cardiovasc Surg 47 (3):269-74. doi: 10.5090/kjtcs.2014.47.3.269.

Kamps, R., R. D. Brandao, B. J. Bosch, A. D. Paulussen, S. Xanthoulea, M. J. Blok, and A. Romano. 2017. "Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification." Int J Mol Sci 18 (2). doi: 10.3390/ijms18020308.
Kang, G., B. N. Bae, B. S. Sohn, J. S. Pyo, G. H. Kang, and K. M. Kim. 2015. "Detection of KIT and PDGFRA mutations in the plasma of patients with gastrointestinal stromal tumor." Target Oncol 10 (4):597-601. doi: 10.1007/s11523-015-0361-1.

Kinde, I., J. Wu, N. Papadopoulos, K. W. Kinzler, and B. Vogelstein. 2011. "Detection and quantification of rare mutations with massively parallel sequencing." Proc Natl Acad Sci U S A 108 (23):9530-5. doi: 10.1073/pnas. 1105422108.

Klein, Dieter. 2002. "Quantification using real time PCR Technology_applications and limitations." Elsevier Science 8 (6):257-260.

Kwon, Sun-Il. 2012. "Next Generation Sequencing (NGS), A Key Tool to open the Personalized Medicine Era." Korean J Clin Lab Sci 44 (4):167-177.
Lars Feuk, Andrew R. Carson \& Stephen W. Scherer 2006. "Structural variation in the human genome." Nature Reviews Genetics 7:85-97.
Lee, J. Y., X. Qing, W. Xiumin, B. Yali, S. Chi, S. H. Bak, H. Y. Lee, J. M. Sun, S. H. Lee, J. S. Ahn, E. K. Cho, D. W. Kim, H. R. Kim, Y. J. Min, S. H. Jung, K. Park, M. Mao, and M. J. Ahn. 2016. "Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02)." Oncotarget 7 (6):6984-93. doi: 10.18632/oncotarget. 6874.

Liu, D., M. Lu, J. Li, Z. Yang, Q. Feng, M. Zhou, Z. Zhang, and L. Shen. 2016. "The patterns and timing of recurrence after curative resection for gastric cancer in China." World J Surg Oncol 14 (1):305. doi: 10.1186/s12957-016-1042-y.
M. Nakagawa, K. Kojima, M. Inokuchi, K. Kato, H. Sugita,T. Kawano, K. Sugihara. 2014. "Patterns, timing and risk factors of recurrence of gastric cancer after laparoscopic gastrectomy: Reliable results following long-term follow-up." Elsevier Science 40:1376-1382.
Muhanna, N., M. A. Di Grappa, H. H. L. Chan, T. Khan, C. S. Jin, Y. Zheng, J. C. Irish, and S. V. Bratman. 2017. "Cell-Free DNA Kinetics in a Pre-Clinical Model of Head and Neck Cancer." Sci Rep 7 (1):16723. doi: 10.1038/s41598-017-17079-6.
Nakagawa, H., and M. Fujita. 2018. "Whole genome sequencing analysis for cancer genomics and precision medicine." Cancer Sci 109 (3):513-522. doi: 10.1111/cas. 13505.
Norio Shiraishi, Masafumi Inomata, Naofumi Osawa, Kazuhiro Yasuda, Yosuke Adachi, Seigo Kitano. 2000. "Early and Late Recurrence after Gastrectomy for Gastric Carcinoma." American Cancer Society 89:255-261.
Park, C. K., H. J. Cho, Y. D. Choi, I. J. Oh, and Y. C. Kim. 2018. "A Phase II Trial of Osimertinib in the Second-Line Treatment of Non-small Cell Lung Cancer with the EGFR T790M Mutation, Detected from Circulating Tumor DNA: LiquidLung-O-Cohort 2." Cancer Res Treat. doi: 10.4143/crt.2018.387.
Park, G., J. K. Park, D. S. Son, S. H. Shin, Y. J. Kim, H. J. Jeon, J. Lee, W. Y. Park, K. H. Lee, and D. Park. 2018. "Utility of targeted deep sequencing for detecting circulating tumor DNA in pancreatic cancer patients." Sci Rep 8 (1):11631. doi: 10.1038/s41598-018-30100-w.
Rawla, P., and A. Barsouk. 2019. "Epidemiology of gastric cancer: global trends, risk factors and prevention." Prz Gastroenterol 14 (1):26-38. doi: 10.5114/pg.2018.80001.

S Curran, J A McKay, H L McLeod, G I Murray. 2000. "Laser capture microscopy." J Clin Pathol: Mol Pathol 53:64-68.
Shin, C. H., W. Y. Lee, S. W. Hong, and Y. G. Chang. 2016. "Characteristics of
gastric cancer recurrence five or more years after curative gastrectomy." Chin J Cancer Res 28 (5):503-510. doi: 10.21147/j.issn.1000-9604.2016.05.05.

Simona Serratì, Simona De Summa, Brunella Pilato, Daniela Petriella, Rosanna Lacalamita, Stefania Tommasi, and Rosamaria Pinto. 2016. "Next-generation sequencing: advances and applications in cancer diagnosis." OncoTargets and Therapy 9:7355-8365.
Siravegna, G., S. Marsoni, S. Siena, and A. Bardelli. 2017. "Integrating liquid biopsies into the management of cancer." Nat Rev Clin Oncol 14 (9):531-548. doi: 10.1038/nrclinonc.2017.14.

Sung, J. S., H. Y. Chong, N. J. Kwon, H. M. Kim, J. W. Lee, B. Kim, S. B. Lee, C. W. Park, J. Y. Choi, W. J. Chang, Y. J. Choi, S. Y. Lee, E. J. Kang, K. H. Park, and Y. H. Kim. 2017. "Detection of somatic variants and EGFR mutations in cell-free DNA from non-small cell lung cancer patients by ultra-deep sequencing using the ion ampliseq cancer hotspot panel and droplet digital polymerase chain reaction." Oncotarget 8 (63):106901-106912. doi: 10.18632/oncotarget. 22456.

Tie, J., Y. Wang, C. Tomasetti, L. Li, S. Springer, I. Kinde, N. Silliman, M. Tacey, H. L. Wong, M. Christie, S. Kosmider, I. Skinner, R. Wong, M. Steel, B. Tran, J. Desai, I. Jones, A. Haydon, T. Hayes, T. J. Price, R. L. Strausberg, L. A. Diaz, Jr., N. Papadopoulos, K. W. Kinzler, B. Vogelstein, and P. Gibbs. 2016. "Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer." Sci Transl Med 8 (346):346ra92. doi: 10.1126/scitranslmed.aaf6219.
Vendrell, J. A., F. T. Mau-Them, B. Beganton, S. Godreuil, P. Coopman, and J. Solassol. 2017. "Circulating Cell Free Tumor DNA Detection as a Routine Tool forLung Cancer Patient Management." Int J Mol Sci 18 (2). doi: $10.3390 / \mathrm{ijms} 18020264$.

Virginia Espina, Julia D Wulfkuhle, Valerie S Calvert, Amy VanMeter, Weidong Zhou, George Coukos, David H Geho, Emanuel F Petricoin III \& Lance A Liotta 2006. "Laser-capture microdissection." Nature protocols 1:586-603.

ACKNOWLEDGEMENT

I would like to express my special thanks to my advisor Prof. Young-woo Kim for advice and guidance. Also, I would like to express my sincere gratitude to my research supervisor Dr. Kyeong-man Hong for encouraging my research and for providing valuable guidance to me. His advice on both research as well as on my career have been invaluable. And thank you very much to professor Hong-man Yoon for his willingness to accept the Committee for my thesis.

I am also very grateful to Dr. Young-ho Kim for teaching me lots of experimental skills and encouraging me when I am in trouble. I also would like to thank Eun-kyung Kang, and Bomyi Won for helping me for adapting laboratory life and giving advice throughout my lab life.

Finally, I would like to thank my mother, and grandparents for all of the sacrifices. Their prayer for me was what sustained me thus far. Thanks for supporting me for everything.

[^0]: R, recurrence ; N, non-recurrence; PreOp, pre-operative; PostOp, post-operative ; -, negative ctDNA; +, positive ctDNA
 *, peritoneal-seeding-positive cases $; * *$ no cancer-specific rearrangement was found in WGS, and no ctDNA monitoring was performed.

[^1]: *The tumor and matched normal genomes are discriminated with the use of ' C^{\prime} and ' N ', respectively.
 **The mean and median coverage as well as the $\%$ of bases ($>=20$ reads) were calculated onto the targeted regions.

[^2]: GGTACATC O K
 AATGGACCG
 TGAAGCCAT
 AG
 AATTCAACA
 GCCCTTCAT

[^3]: ##

[^4]: **, modified by using 1.5 mM 7 -deaza-dGTP
 ***, Primer pairs for another PCR

[^5]: *Primers for forward (F), reverse (R), and probe (Probe) sequences.

